933 research outputs found
Topology, Locality, and Aharonov-Bohm Effect with Neutrons
Recent neutron interferometry experiments have been interpreted as
demonstrating a new topological phenomenon similar in principle to the usual
Aharonov-Bohm (AB) effect, but with the neutron's magnetic moment replacing the
electron's charge. We show that the new phenomenon, called Scalar AB (SAB)
effect, follows from an ordinary local interaction, contrary to the usual AB
effect, and we argue that the SAB effect is not a topological effect by any
useful definition. We find that SAB actually measures an apparently novel spin
autocorrelation whose operator equations of motion contain the local torque in
the magnetic field. We note that the same remarks apply to the Aharonov-Casher
effect.Comment: 9 page
Observation of Scalar Aharonov-Bohm Effect with Longitudinally Polarized Neutrons
We have carried out a neutron interferometry experiment using longitudinally polarized neutrons to observe the scalar Aharonov-Bohm effect. The neutrons inside the interferometer are polarized parallel to an applied pulsed magnetic field B(t). The pulsed B field is spatially uniform so it exerts no force on the neutrons. Its direction also precludes the presence of any classical torque to change the neutron polarization
Scalar Aharonov-Bohm effect with longitudinally polarized neutrons
In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a “dual” scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper
Classical and Quantum Interaction of the Dipole
A unified and fully relativistic treatment of the interaction of the electric
and magnetic dipole moments of a particle with the electromagnetic field is
given. New forces on the particle due to the combined effect of electric and
magnetic dipoles are obtained. Four new experiments are proposed, three of
which would observe topological phase shifts.Comment: 10 pages, Latex/Revtex. Some minor errors have been correcte
Interrelations Between the Neutron's Magnetic Interactions and the Magnetic Aharonov-Bohm Effect
It is proved that the phase shift of a polarized neutron interacting with a
spatially uniform time-dependent magnetic field, demonstrates the same physical
principles as the magnetic Aharonov-Bohm effect. The crucial role of inert
objects is explained, thereby proving the quantum mechanical nature of the
effect. It is also proved that the nonsimply connectedness of the field-free
region is not a profound property of the system and that it cannot be regarded
as a sufficient condition for a nonzero phase shift.Comment: 18 pages, 1 postscript figure, Late
Correspondences and Quantum Description of Aharonov-Bohm and Aharonov-Casher Effects
We establish systematic consolidation of the Aharonov-Bohm and
Aharonov-Casher effects including their scalar counterparts. Their formal
correspondences in acquiring topological phases are revealed on the basis of
the gauge symmetry in non-simply connected spaces and the adiabatic condition
for the state of magnetic dipoles. In addition, investigation of basic two-body
interactions between an electric charge and a magnetic dipole clarifies their
appropriate relative motions and discloses physical interrelations between the
effects. Based on the two-body interaction, we also construct an exact
microscopic description of the Aharonov-Bohm effect, where all the elements are
treated on equal footing, i.e., magnetic dipoles are described
quantum-mechanically and electromagnetic fields are quantized. This microscopic
analysis not only confirms the conventional (semiclassical) results and the
topological nature but also allows one to explore the fluctuation effects due
to the precession of the magnetic dipoles with the adiabatic condition relaxed
Local/Non-Local Complementarity in Topological Effects
In certain topological effects the accumulation of a quantum phase shift is
accompanied by a local observable effect. We show that such effects manifest a
complementarity between non-local and local attributes of the topology, which
is reminiscent but yet different from the usual wave-particle complementarity.
This complementarity is not a consequence of non-commutativity, rather it is
due to the non-canonical nature of the observables. We suggest that a
local/non-local complementarity is a general feature of topological effects
that are ``dual'' to the AB effect.Comment: 4 page
Enhanced diffusion due to active swimmers at a solid surface
We consider two systems of active swimmers moving close to a solid surface,
one being a living population of wild-type \textit{E. coli} and the other being
an assembly of self-propelled Au-Pt rods. In both situations, we have
identified two different types of motion at the surface and evaluated the
fraction of the population that displayed ballistic trajectories (active
swimmers) with respect to those showing random-like behavior. We studied the
effect of this complex swimming activity on the diffusivity of passive tracers
also present at the surface. We found that the tracer diffusivity is enhanced
with respect to standard Brownian motion and increases linearly with the
activity of the fluid, defined as the product of the fraction of active
swimmers and their mean velocity. This result can be understood in terms of
series of elementary encounters between the active swimmers and the tracers.Comment: 4 pages, 2 figures in color, Physical Review Letters (in production
- …
