27,718 research outputs found
Periodic orbit bifurcations and scattering time delay fluctuations
We study fluctuations of the Wigner time delay for open (scattering) systems
which exhibit mixed dynamics in the classical limit. It is shown that in the
semiclassical limit the time delay fluctuations have a distribution that
differs markedly from those which describe fully chaotic (or strongly
disordered) systems: their moments have a power law dependence on a
semiclassical parameter, with exponents that are rational fractions. These
exponents are obtained from bifurcating periodic orbits trapped in the system.
They are universal in situations where sufficiently long orbits contribute. We
illustrate the influence of bifurcations on the time delay numerically using an
open quantum map.Comment: 9 pages, 3 figures, contribution to QMC200
Traumatic Neuroma Following Sagittal Split Osteotomy of the Mandible
A 16-year-old male underwent bilateral sagittal split osteotomy of the mandible to correct a mandibular deficiency. Twenty-one years later, a routine panoramic radiograph revealed a radiolucent lesion on the left side of the mandible. The lesion was biopsied. As the patient did not have symptoms and the lesion was connected to the inferior alveolar nerve, the lesion was not totally excised in order to preserve nerve function. The histological features were consistent with traumatic neuroma, and no further surgical procedure was planned
Quantum key distribution with higher-order alphabets using spatially-encoded qudits
We propose and demonstrate a quantum key distribution scheme in higher-order
-dimensional alphabets using spatial degrees of freedom of photons. Our
implementation allows for the transmission of 4.56 bits per sifted photon,
while providing improved security: an intercept-resend attack on all photons
would induce an error rate of 0.47. Using our system, it should be possible to
send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio
Conservation of Orbital Angular Momentum in Stimulated Down-Conversion
We report on an experiment demonstrating the conservation of orbital angular
momentum in stimulated down-conversion. The orbital angular momentum is not
transferred to the individual beams of the spontaneous down-conversion, but it
is conserved when twin photons are taken individually. We observe the
conservation law for an individual beam of the down-conversion through
cavity-free stimulated emission.Comment: Submitted for publication in Phys. Rev. Let
Multivariate phase space reconstruction by nearest neighbor embedding with different time delays
A recently proposed nearest neighbor based selection of time delays for phase
space reconstruction is extended to multivariate time series, with an iterative
selection of variables and time delays. A case study of numerically generated
solutions of the x- and z coordinates of the Lorenz system, and an application
to heart rate and respiration data, are used for illustration.Comment: 4 pages, 3 figure
Neutral heavy lepton production at next high energy linear colliders
The discovery potential for detecting new heavy Majorana and Dirac neutrinos
at some recently proposed high energy colliders is discussed. These
new particles are suggested by grand unified theories and superstring-inspired
models. For these models the production of a single heavy neutrino is shown to
be more relevant than pair production when comparing cross sections and
neutrino mass ranges.
The process is calculated
including on-shell and off-shell heavy neutrino effects.
We present a detailed study of cross sections and distributions that shows a
clear separation between the signal and standard model contributions, even
after including hadronization effects.Comment: 4 pages including 15 figures, 1 table. RevTex. Accepted in Physical
Review
Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper
We experimentally demonstrate the use of saw-tooth optical pulses, which are shaped using a fiber Bragg grating, to achieve robust and high performance time-domain add-drop multiplexing in a scheme based on cross-phase (XPM) modulation in an optical fiber, with subsequent offset filtering. As compared to the use of more conventional pulse shapes, such as Gaussian pulses of a similar pulse width, the purpose-shaped saw-tooth pulses allow higher extinction ratios for the add and drop windows and significant improvements in the receiver sensitivity for the dropped and added channels
Chromosome Segregation Is Biased by Kinetochore Size
Chromosome missegregation during mitosis or meiosis is a hallmark of cancer and the main cause of prenatal death in humans. The gain or loss of specific chromosomes is thought to be random, with cell viability being essentially determined by selection. Several established pathways including centrosome amplification, sister-chromatid cohesion defects, or a compromised spindle assembly checkpoint can lead to chromosome missegregation. However, how specific intrinsic features of the kinetochore—the critical chromosomal interface with spindle microtubules—impact chromosome segregation remains poorly understood. Here we used the unique cytological attributes of female Indian muntjac, the mammal with the lowest known chromosome number (2n = 6), to characterize and track individual chromosomes with distinct kinetochore size throughout mitosis. We show that centromere and kinetochore functional layers scale proportionally with centromere size. Measurement of intra-kinetochore distances, serial-section electron microscopy, and RNAi against key kinetochore proteins confirmed a standard structural and functional organization of the Indian muntjac kinetochores and revealed that microtubule binding capacity scales with kinetochore size. Surprisingly, we found that chromosome segregation in this species is not random. Chromosomes with larger kinetochores bi-oriented more efficiently and showed a 2-fold bias to congress to the equator in a motor-independent manner. Despite robust correction mechanisms during unperturbed mitosis, chromosomes with larger kinetochores were also strongly biased to establish erroneous merotelic attachments and missegregate during anaphase. This bias was impervious to the experimental attenuation of polar ejection forces on chromosome arms by RNAi against the chromokinesin Kif4a. Thus, kinetochore size is an important determinant of chromosome segregation fidelity
- …
