431 research outputs found
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
High-yield production of nano-lateral size graphene oxide by high-power ultrasonication
Nanographene oxide (GOn) constitutes a nanomaterial of high value in the biomedical field. However, large scale production of highly stable aqueous dispersions of GOn is yet to be achieved. In this work, we explored high-power ultrasonication as a method to reduce particle size of GO and characterized the impact of the process on the physicochemical properties of the material. GOn was obtained with lateral dimensions of 99 ± 43 nm and surface charge of -39.9 ± 2.2 mV. High-power ultrasonication enabled an improvement of stability features, particularly by resulting in a decrease of the average particle size, as well as zeta potential, in comparison to GO obtained by low-power exfoliation and centrifugation (287 ± 139 nm; -29.7 ± 1.2 mV). Remarkably, GOn aqueous dispersions were stable for up to 6 months of shelf-time, with a global process yield of 74%. This novel method enabled the production of large volumes of highly concentrated (7.5 mg mL-1) GOn aqueous dispersions. Chemical characterization of GOn allowed the identification of characteristic oxygen functional groups, supporting high-power ultrasonication as a fast, efficient, and productive process for reducing GO lateral size, while maintaining the material’s chemical features.This work was financed by FEDER funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by national funds (PIDDAC) through FCT/MCTES in the framework of the project POCI-01-0145-FEDER-031143, and Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE. Authors would also like to thank the support of i3S Scientific Platforms and respective funding: HEMS, member of the national infrastructure PPBI—Portuguese Platform of Bioimaging: POCI-01-0145-FEDER-022122; and Biointerfaces and Nanotechnology (BN) Laboratory, Portuguese Funds through FCT, UID/BIM/04293/2019. Artur Pinto thanks the Portuguese Foundation for Science and Technology (FCT) for the financial support of his work contract through the Scientific Employment Stimulus—Individual Call—[CEECIND/03908/2017]
Graphene oxide topical administration: Skin permeability studies
Nanostructured carriers have been widely used in pharmaceutical formulations for der-matological treatment. They offer targeted drug delivery, sustained release, improved biostability, and low toxicity, usually presenting advantages over conventional formulations. Due to its large surface area, small size and photothermal properties, graphene oxide (GO) has the potential to be used for such applications. Nanographene oxide (GOn) presented average sizes of 197.6 ± 11.8 nm, and a surface charge of -39.4 ± 1.8 mV, being stable in water for over 6 months. 55.5% of the mass of GOn dispersion (at a concentration of 1000 µg mL-1 ) permeated the skin after 6 h of exposure. GOn dispersions have been shown to absorb near-infrared radiation, reaching temperatures up to 45.7¿ C, within mild the photothermal therapy temperature range. Furthermore, GOn in amounts superior to those which could permeate the skin were shown not to affect human skin fibroblasts (HFF-1) morphology or viability, after 24 h of incubation. Due to its large size, no skin permeation was observed for graphite particles in aqueous dispersions stabilized with Pluronic P-123 (Gt–P-123). Altogether, for the first time, Gon’s potential as a topic administration agent and for delivery of photothermal therapy has been demonstrated.This work was financed by FEDER funds through the COMPETE 2020–Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by national funds (PIDDAC) through FCT/MCTES in the framework of the project POCI-01-0145-FEDER-031143, and Base Funding-UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy–LEPABE. Additional funding included FCT/MCTES in the framework of the project “Institute for Research and Innovation in Health Sciences” (UID/BIM/04293/2019). Authors would also like to thank the support of i3S Scientific Platforms and respective funding: HEMS, member of the national infrastructure PPBI–Portuguese Platform of Bioimaging: POCI-01-0145-FEDER-022122; and Biointerfaces and Nanotechnology (BN) Laboratory, Portuguese Funds through FCT, UID/BIM/04293/2019. Artur Pinto thanks the Portuguese Foundation for Science and Technology (FCT) for the financial support of his work contract through the Scientific Employment Stimulus-Individual Call–[CEECIND/03908/2017]. Soraia Pinto (SFRH/BD/144719/2019) would like to thank FCT, Portugal for financial support
Heparan sulfate proteoglycans: structure, protein interactions and cell signaling
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Cultivo orgânico de cultivares de cebola nas condições da Baixada Fluminense
Com o objetivo de avaliar o desempenho agronômico e a produtividade de cultivares de cebola em cultivo orgânico nas condições da Baixada Fluminense-RJ, foi conduzido um experimento no período de junho a outubro de 2010, no município de Seropédica-RJ. Foram avaliados os caracteres em 10 cultivares de cebola. O delineamento experimental foi em blocos ao acaso com quatro repetições. Avaliou-se as produtividades total, comercial e não comercial, bem como a classificação das cebolas. A produtividade total de bulbos variou de 14,42 a 24,09 t ha-1, enquanto a produtividade comercial oscilou entre 14,28 a 24,09 t ha-1. As cultivares mais produtivas e que podem ser recomendadas, foram a Alfa Tropical, Alfa São Francisco, Baia Periforme, Madrugada, Primavera, Jubileu, Pêra Norte e Lola; enquanto as cultivares menos produtivas foram a Vale Ouro IPA 11 e Franciscana IPA 10. A produção de bulbos considerados 'refugo' foi muita baixa, sendo que as cultivares Alfa Tropical, Alfa São Francisco e Lola não produziram essa classe de bulbos. O peso médio de bulbos variou de 54,1-90,3 g, sendo as cultivares Franciscana IPA 10 e Vale Ouro IPA 11, as que apresentaram os menores valores para esse caráter. Os resultados mostraram que o cultivo orgânico da cebola nas condições da Baixada Fluminense é viável, podendo ser obtidas produtividades semelhantes às obtidas no cultivo convencional.</jats:p
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Climate change research and policy in Portugal
This article offers a review of research and policy on climate change in Portugal and is organized into three main themes: scientific knowledge and assessment of climate change; policy analysis and evaluation; and public engagement. Modern scientific research on meteorology and climatology started in Portugal in the 1950s and a strong community of researchers in climate science, vulnerabilities, impacts, and adaptation has since developed, particularly in the last decade. Nevertheless, there are still many gaps in research, especially regarding the economic costs of climate change in Portugal and costs and benefits of adaptation. Governmental policies with a strong emphasis on mitigation were introduced at the end of the 1990s. As greenhouse gas emissions continued to rise beyond its Kyoto target for 2012, the country had to resort to the Kyoto Flexibility Mechanisms in order to comply. Climate change adaptation policies were introduced in 2010 but are far from being fully implemented. Regarding public engagement with climate change, high levels of concern contrast with limited understanding and rather weak behavioral dispositions to address climate change. Citizens display a heavy reliance on the media as sources of information, which are dominated by a techno-managerial discourse mainly focused on the global level. The final part of the article identifies research gaps and outlines a research agenda. Connections between policy and research are also discussed
Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter
VertaisarvioitupeerReviewe
- …
