1,883 research outputs found
Apraxia and motor dysfunction in corticobasal syndrome
Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS. Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy
Quantum physics in inertial and gravitational fields
Covariant generalizations of well-known wave equations predict the existence
of inertial-gravitational effects for a variety of quantum systems that range
from Bose-Einstein condensates to particles in accelerators. Additional effects
arise in models that incorporate Born reciprocity principle and the notion of a
maximal acceleration. Some specific examples are discussed in detail.Comment: 25 pages,1 figure,to appear in "Relativity in Rotating Frame
Evapotranspiração e coeficientes de cultivo da beterraba orgânica sob cobertura morta de leguminosa e gramínea.
As práticas agrícolas que maximizam a produtividade e o uso da água são de vital importância para a agricultura. Assim, foram testados três tipos de manejo do solo com objetivo de determinar a evapotranspiração (ETc) e os coeficientes de cultivo (kc) da beterraba. Os tipos de manejo foram a utilização de coberturas mortas vegetais, denominadas capim cameroon (Pennisetum purpureum), gliricídia (Gliricidia sepium) e solo sem cobertura morta em área experimental do SIPA (Sistema Integrado de Produção Orgânica) localizado em Seropédica, Brasil. A lâmina de irrigação foi estimada com base no balanço de água no solo, cujo monitoramento foi realizado com a técnica da TDR. As ETc acumuladas para a cultura da beterraba foram 59,41; 55,31 e 119,62 mm, respectivamente, para capim cameroon, gliricídia e solo sem cobertura morta. A evapotranspiração de referência (ETo) foi obtida por meio do modelo de Penamn-Monteith. Os valores médios de kc obtidos para as fases inicial, média e final de desenvolvimento foram de 0,39; 0,42 e 1,02; 0,79; 0,76 e 1,18; e 0,56; 0,61 e 0,84, respectivamente, para capim cameroon, gliricídia e solo sem cobertura morta. O uso da cobertura do solo com gramínea ou leguminosa minimizou de forma expressiva a demanda hídrica da cultura da beterraba (Beta vulgaris)
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Diagnostic and economic evaluation of new biomarkers for Alzheimer's disease: the research protocol of a prospective cohort study
Doc number: 72 Abstract Background: New research criteria for the diagnosis of Alzheimer's disease (AD) have recently been developed to enable an early diagnosis of AD pathophysiology by relying on emerging biomarkers. To enable efficient allocation of health care resources, evidence is needed to support decision makers on the adoption of emerging biomarkers in clinical practice. The research goals are to 1) assess the diagnostic test accuracy of current clinical diagnostic work-up and emerging biomarkers in MRI, PET and CSF, 2) perform a cost-consequence analysis and 3) assess long-term cost-effectiveness by an economic model. Methods/design: In a cohort design 241 consecutive patients suspected of having a primary neurodegenerative disease are approached in four academic memory clinics and followed for two years. Clinical data and data on quality of life, costs and emerging biomarkers are gathered. Diagnostic test accuracy is determined by relating the clinical practice and new research criteria diagnoses to a reference diagnosis. The clinical practice diagnosis at baseline is reflected by a consensus procedure among experts using clinical information only (no biomarkers). The diagnosis based on the new research criteria is reflected by decision rules that combine clinical and biomarker information. The reference diagnosis is determined by a consensus procedure among experts based on clinical information on the course of symptoms over a two-year time period. A decision analytic model is built combining available evidence from different resources among which (accuracy) results from the study, literature and expert opinion to assess long-term cost-effectiveness of the emerging biomarkers. Discussion: Several other multi-centre trials study the relative value of new biomarkers for early evaluation of AD and related disorders. The uniqueness of this study is the assessment of resource utilization and quality of life to enable an economic evaluation. The study results are generalizable to a population of patients who are referred to a memory clinic due to their memory problems. Trial registration: NCT0145089
Early assembly of the most massive galaxies
The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging(1). Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate(2,3). Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 425 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models(4,5) based on the largest simulations of dark-matter halo development(1). These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly
Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro
Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death.
METHODS:
Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits.
RESULTS:
All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production.
CONCLUSION:
Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.We thank the Portuguese Science and Technology Foundation (FCT) for VMG fellowship (ref. SFRH/BI/33503/2008). The authors thank Mr. Antonio Marques from Frutercoop - Azores, who kindly collected and provided the propolis sample for the study
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
