23 research outputs found
R&D efforts towards a neutrino factory
The R&D efforts towards a neutrino factory are outlined with special emphasis
on the muon cooling issue and the data collected for target optimization.Comment: contribution to NOW08, Conca Specchiulla, Otranto, 200
Behaviour in Magnetic Fields of Fast Conventional and Fine-Mesh Photomultipliers
The performance of both conventional and fine-mesh Hamamatsu photomultipliers
has been measured inside moderate magnetic fields. This has allowed the test of
effective shielding solutions for photomultipliers, to be used in
time-of-flight detectors based on scintillation counters. Both signal amplitude
reduction or deterioration of the timing properties inside magnetic fields have
been investigated
Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities
A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on the resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010
Recommended from our members
Design Studies of Magnet Systems for Muon Helical Cooling Channels
Helical cooling channels with superimposed solenoid and helical dipole and quadrupole coils, and a pressurized gas absorber in the aperture offer high efficiency of 6D muon beam cooling. In this paper, we continue design studies and comparison of two basic concepts of magnet system proposed for a helical cooling channel focusing on the high field sections. The results of magnetic analysis and Lorentz force calculations as well as the superconductor choice are presented and discussed
Recommended from our members
Effect of subelement spacing in RRP Nb3Sn strands
The Restacked Rod Process (RRP) is the Nb{sub 3}Sn strand technology presently producing the largest critical current densities at 4.2 K and 12 T. However, when subject to plastic deformation, RRP subelements (SE) were found to merge into each other, creating larger filaments with a somewhat continuous barrier. In this case, the strand sees a larger effective filament size, d{sub eff}, and its instability can dramatically increase locally leading to cable quench. To reduce and possibly eliminate this effect, Oxford Instruments Superconducting Technology (OST) developed for FNAL a modified RRP strand design with larger Cu spacing between SE's arranged in a 60/61 array. Strand samples of this design with sizes from 0.7 to 1 mm were first evaluated for transport current properties. A comparison study was then performed between the regular 54/61 and the modified 60/61 design using 0.7 mm round and deformed strands. Finite element modeling of the deformed strands was also performed with ANSYS
Recommended from our members
Doped H(2)-Filled RF Cavities for Muon Beam Cooling
RF cavities pressurized with hydrogen gas may provide effective muon beam ionization cooling needed for muon colliders. Recent 805 MHz test cell studies reported below include the first use of SF{sub 6} dopant to reduce the effects of the electrons that will be produced by the ionization cooling process in hydrogen or helium. Measurements of maximum gradient in the Paschen region are compared to a simulation model for a 0.01% SF{sub 6} doping of hydrogen. The observed good agreement of the model with the measurements is a prerequisite to the investigation of other dopants
Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities
A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on the resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010
