20 research outputs found
Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings
Introduction of engineered nanoparticles (ENPs) into traditional surface coatings (e.g., paints, lacquers, fillers) may result in new exposures to both workers and consumers and possibly also a new risk to their health. During finishing and renovation, such products may also be a substantial source of exposure to ENPs or aggregates thereof. This study investigates the particle size distributions (5.6 nm–19.8 μm) and the total number of dust particles generated during sanding of ENP-doped paints, lacquers, and fillers as compared to their conventional counterparts. In all products, the dust emissions from sanding were found to consist of five size modes: three modes under 1 μm and two modes around 1 and 2 μm. Corrected for the emission from the sanding machine, the sanding dust, was dominated by 100–300 nm size particles, whereas the mass and surface area spectra were dominated by the micrometer modes. Adding ENPs to the studied products only vaguely affected the geometric mean diameters of the particle modes in the sanding dust when compared to their reference products. However, we observed considerable differences in the number concentrations in the different size modes, but still without revealing a clear effect of ENPs on dust emissions from sanding
Analysis of the osseointegrative force of a hyperhydrophilic and nanostructured surface refinement for TPS surfaces in a gap healing model with the Göttingen minipig
Postnatal neurogenesis in the hippocampal dentate gyrus and subventricular zone of the Goettingen minipig.
Postnatal neurogenesis is currently viewed as important for neuroplasticity and brain repair. We are, therefore, interested in animal models for neuroimaging of postnatal neurogenesis. A recent stereological study found an age-dependent increase in the number of neurons and glial cells in the neocortex of G\uf6ttingen minipigs, suggesting that this species may be characterized by a prolonged postnatal neurogenesis. Since there is no direct evidence on this issue, the goal of our study was to quantify cell proliferation in the two major neurogenic regions of the postnatal brain - the subventricular zone of the lateral ventricle (SVZ) and the hippocampal dentate gyrus (DG) - at two separate points during the lifespan of the minipig. G\uf6ttingen minipigs aged 6-7 and 32 weeks were injected with bromodeoxyuridine (BrdU), a marker of cycling cells, and killed after 2h. We found BrdU-positive cells numbering 165,000 in the SVZ and 35,000 in the DG at 6-7 weeks and 66,000 in the SVZ and 19,000 in the DG at 32 weeks-of-age. Stereology showed a 60% increase in the total number of DG granule cells between 6-7 and 32 weeks-of-age. Our findings show a continued postnatal neurogenesis in the major neurogenic regions of G\uf6ttingen minipigs, thereby providing a potential animal model for studies aimed at examining ongoing neurogenesis in the living brain with molecular neuroimaging technology
Excessive sucrose consumption reduces synaptic density and increases cannabinoid receptors in G\uf6ttingen minipigs
\ua9 2024 The Author(s)Diets high in sucrose and fat are becoming more prevalent the world over, accompanied by a raised prevalence of cardiovascular diseases, cancers, diabetes, obesity, and metabolic syndrome. Clinical studies link unhealthy diets with the development of mental health disorders, particularly depression. Here, we investigate the effects of 12 days of sucrose consumption administered as 2 L of 25% sucrose solution daily for 12 days in G\uf6ttingen minipigs on the function of brain receptors involved in reward and motivation, regulating feeding, and pre- and post-synaptic mechanisms. Through quantitative autoradiography of cryostat sections containing limbic brain regions, we investigated the effects of sucrose restricted to a 1-h period each morning, on the specific binding of [3H]raclopride on dopamine D2/3 receptors, [3H]UCB-J at synaptic vesicle glycoprotein 2A (SV2A), [3H]MPEPγ at metabotropic glutamate receptor subtype 5 (mGluR5) and [3H]SR141716A at the cannabinoid receptor 1 (CB1). Compared to control diet animals, the sucrose group showed significantly lower [3H]UCB-J and [3H]MPEPγ binding in the prefrontal cortex. The sucrose-consuming minipigs showed higher hippocampal CB1 binding, but unaltered dopamine D2/3 binding compared to the control group. We found that the sucrose diet reduced the synaptic density marker while increasing CB1 binding in limbic brain structures, which may subserve maladaptive changes in appetite regulation and feeding. Further studies of the effects of diets and lifestyle habits on brain neuroreceptor and synaptic density markers are warranted
Activation of NMDA Receptor Ion Channels by Deep Brain Simulation in the Pig Visualised with[<sup>18</sup>F]GE-179 PET
Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs
Abstract Background Positron emission tomography (PET) imaging of anaesthetized pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the distribution of several radiotracers. However, the effect of physiological factors regulating CBF is unresolved and therefore knowledge of optimal anaesthesia and monitoring of pigs in PET studies is sparse. The aim of this study was therefore to determine if and how physiological variables and the duration of anaesthesia affected CBF as measured by PET using [15O]-water in isoflurane–N2O anaesthetized domestic female pigs. First, we examined how physiological monitoring parameters were associated with CBF, and which parameters should be monitored and if possible kept constant, during studies where a stable CBF is important. Secondly, we examined how the duration of anaesthesia affected CBF and the monitoring parameters. Results No significant statistical correlations were found between CBF and the nine monitoring variables. However, we found that arterial carbon dioxide tension (PaCO2) and body temperature were important predictors of CBF that should be observed and kept constant. In addition, we found that long-duration anaesthesia was significantly correlated with high heart rate, low arterial oxygen tension, and high body temperature, but not with CBF. Conclusions The findings indicate that PaCO2 and body temperature are crucial for maintaining stable levels of CBF and thus optimizing PET imaging of molecular mechanisms in the brain of anaesthetized pigs. Therefore, as a minimum these two variables should be monitored and kept constant. Furthermore, the duration of anaesthesia should be kept constant to avoid variations in monitoring variables
