204 research outputs found

    Presentación

    Get PDF
    En las últimas décadas, la investigación en la Universidad de Santiago de Chile ha recibido un fuerte impulso, liderando diversas áreas de investigación en el país. Un aporte a la difusión de nuestras actividades en investigación lo constituye la revista CONTRIBUCIONES, pues a través de ella difundimos a la comunidad de la Universidad de Santiago de Chile y a comunidades académicas externas, algunos de nuestros estudios, en un formato ameno que permite su lectura también a no especialistas

    Tailoring the magnetic properties of Fe asymmetric nanodots

    Full text link
    Asymmetric dots as a function of their geometry have been investigated using three-dimensional (3D) object oriented micromagnetic framework (OOMMF) code. The effect of shape asymmetry of the disk on coercivity and remanence is studied. Angular dependence of the remanence and coercivity is also addressed. Asymmetric dots are found to reverse their magnetization by nucleation and propagation of a vortex, when the field is applied parallel to the direction of asymmetry. However, complex reversal modes appear when the angle at which the external field is applied is varied, leading to a non monotonic behavior of the coercivity and remanence.Comment: 5 pages, 7 figure

    Stability of magnetic configurations in nanorings

    Full text link
    The relative stability of the vortex, onion and ferromagnetic phases in nanorings is examined as a function of the ring geometry. Total energy calculations are carried out analytically, based on simple models for each configuration. Results are summarized by phase diagrams, which might be used as a guide to the production of rings with specific magnetic properties.Comment: To appear in Journal of Applied Physic

    Remanence of Ni nanowire arrays: Influence of size and labyrinth magnetic structure

    Full text link
    The influence of the macroscopic size of the Ni nanowire array system on their remanence state has been investigated. A simple magnetic phenomenological model has been developed to obtain the remanence as a function of the magnetostatic interactions in the array. We observe that, due to the long range of the dipolar interactions between the wires, the size of the sample strongly influence the remanence of the array. On the other hand, the magnetic state of nanowires has been studied by variable field magnetic force microscopy for different remanent states. The distribution of nanowires with the magnetization in up or down directions and the subsequent remanent magnetization has been deduced from the magnetic images. The existence of two short-range magnetic orderings with similar energies can explain the typical labyrinth pattern observed in magnetic force microscopy images of the nanowire arrays

    Thermodynamics of Two Dimensional Magnetic Nanoparticles

    Full text link
    A two dimensional magnetic particle in the presence of an external magnetic field is studied. Equilibrium thermodynamical properties are derived by evaluating analytically the partition function. When the external field is applied perpendicular to the anisotropy axis the system exhibits a second order phase transition with order parameter being the magnetization parallel to the field. In this case the system is isomorph to a mechanical system consisting in a particle moving without friction in a circle rotating about its vertical diameter. Contrary to a paramagnetic particle, equilibrium magnetization shows a maximum at finite temperature. We also show that uniaxial anisotropy in a system of noninteracting particles can be missinterpreted as a ferromagnetic or antiferromagnetic coupling among the magnetic particles depending on the angle between anisotropy axis and magnetic field.Comment: 4 pages 6 figures 19 reference
    corecore