5,002 research outputs found

    Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

    Full text link
    We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modifications of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices.Comment: 6 pages, 4 figures, final published versio

    Towards Supergravity Duals of Chiral Symmetry Breaking in Sasaki-Einstein Cascading Quiver Theories

    Full text link
    We construct a first order deformation of the complex structure of the cone over Sasaki-Einstein spaces Y^{p,q} and check supersymmetry explicitly. This space is a central element in the holographic dual of chiral symmetry breaking for a large class of cascading quiver theories. We discuss a solution describing a stack of N D3 branes and M fractional D3 branes at the tip of the deformed spaces.Comment: 28 pages, no figures. v2: typos, references and a note adde

    Affine T-varieties of complexity one and locally nilpotent derivations

    Full text link
    Let X=spec A be a normal affine variety over an algebraically closed field k of characteristic 0 endowed with an effective action of a torus T of dimension n. Let also D be a homogeneous locally nilpotent derivation on the normal affine Z^n-graded domain A, so that D generates a k_+-action on X that is normalized by the T-action. We provide a complete classification of pairs (X,D) in two cases: for toric varieties (n=\dim X) and in the case where n=\dim X-1. This generalizes previously known results for surfaces due to Flenner and Zaidenberg. As an application we compute the homogeneous Makar-Limanov invariant of such varieties. In particular we exhibit a family of non-rational varieties with trivial Makar-Limanov invariant.Comment: 31 pages. Minor changes in the structure. Fixed some typo

    Nonequilibrium electron spin polarization in a double quantum dot. Lande mechanism

    Full text link
    In moderately strong magnetic fields, the difference in Lande g-factors in each of the dots of a coupled double quantum dot device may induce oscillations between singlet and triplet states of the entangled electron pair and lead to a nonequilibrium electron spin polarization. We will show that this polarization may partially survive the rapid inhomogeneous decoherence due to random nuclear magnetic fields.Comment: New version contains figures. New title better reflects the content of the pape

    Nonlinear Band Structure in Bose Einstein Condensates: The Nonlinear Schr\"odinger Equation with a Kronig-Penney Potential

    Full text link
    All Bloch states of the mean field of a Bose-Einstein condensate in the presence of a one dimensional lattice of impurities are presented in closed analytic form. The band structure is investigated by analyzing the stationary states of the nonlinear Schr\"odinger, or Gross-Pitaevskii, equation for both repulsive and attractive condensates. The appearance of swallowtails in the bands is examined and interpreted in terms of the condensates superfluid properties. The nonlinear stability properties of the Bloch states are described and the stable regions of the bands and swallowtails are mapped out. We find that the Kronig-Penney potential has the same properties as a sinusoidal potential; Bose-Einstein condensates are trapped in sinusoidal optical lattices. The Kronig-Penney potential has the advantage of being analytically tractable, unlike the sinusoidal potential, and, therefore, serves as a good model for experimental phenomena.Comment: Version 2. Fixed typos, added referenc

    Langevin Thermostat for Rigid Body Dynamics

    Full text link
    We present a new method for isothermal rigid body simulations using the quaternion representation and Langevin dynamics. It can be combined with the traditional Langevin or gradient (Brownian) dynamics for the translational degrees of freedom to correctly sample the NVT distribution in a simulation of rigid molecules. We propose simple, quasi-symplectic second-order numerical integrators and test their performance on the TIP4P model of water. We also investigate the optimal choice of thermostat parameters.Comment: 15 pages, 13 figures, 1 tabl

    Influence of boundary conditions on quantum escape

    Get PDF
    It has recently been established that quantum statistics can play a crucial role in quantum escape. Here we demonstrate that boundary conditions can be equally important - moreover, in certain cases, may lead to a complete suppression of the escape. Our results are exact and hold for arbitrarily many particles.Comment: 6 pages, 3 figures, 1 tabl

    Irreducible Representations of Diperiodic Groups

    Full text link
    The irreducible representations of all of the 80 diperiodic groups, being the symmetries of the systems translationally periodical in two directions, are calculated. To this end, each of these groups is factorized as the product of a generalized translational group and an axial point group. The results are presented in the form of the tables, containing the matrices of the irreducible representations of the generators of the groups. General properties and some physical applications (degeneracy and topology of the energy bands, selection rules, etc.) are discussed.Comment: 30 pages, 5 figures, 28 tables, 18 refs, LaTex2.0

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    Polyhedral Cosmic Strings

    Full text link
    Quantum field theory is discussed in M\"obius corner kaleidoscopes using the method of images. The vacuum average of the stress-energy tensor of a free field is derived and is shown to be a simple sum of straight cosmic string expressions, the strings running along the edges of the corners. It does not seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include
    corecore