875 research outputs found
On Dijkgraaf-Witten Type Invariants
We explicitly construct a series of lattice models based upon the gauge group
which have the property of subdivision invariance, when the coupling
parameter is quantized and the field configurations are restricted to satisfy a
type of mod- flatness condition. The simplest model of this type yields the
Dijkgraaf-Witten invariant of a -manifold and is based upon a single link,
or -simplex, field. Depending upon the manifold's dimension, other models
may have more than one species of field variable, and these may be based on
higher dimensional simplices.Comment: 18 page
Unifying W-Algebras
We show that quantum Casimir W-algebras truncate at degenerate values of the
central charge c to a smaller algebra if the rank is high enough: Choosing a
suitable parametrization of the central charge in terms of the rank of the
underlying simple Lie algebra, the field content does not change with the rank
of the Casimir algebra any more. This leads to identifications between the
Casimir algebras themselves but also gives rise to new, `unifying' W-algebras.
For example, the kth unitary minimal model of WA_n has a unifying W-algebra of
type W(2,3,...,k^2 + 3 k + 1). These unifying W-algebras are non-freely
generated on the quantum level and belong to a recently discovered class of
W-algebras with infinitely, non-freely generated classical counterparts. Some
of the identifications are indicated by level-rank-duality leading to a coset
realization of these unifying W-algebras. Other unifying W-algebras are new,
including e.g. algebras of type WD_{-n}. We point out that all unifying quantum
W-algebras are finitely, but non-freely generated.Comment: 13 pages (plain TeX); BONN-TH-94-01, DFTT-15/9
The Drinfel'd Double and Twisting in Stringy Orbifold Theory
This paper exposes the fundamental role that the Drinfel'd double \dkg of
the group ring of a finite group and its twists \dbkg, \beta \in
Z^3(G,\uk) as defined by Dijkgraaf--Pasquier--Roche play in stringy orbifold
theories and their twistings.
The results pertain to three different aspects of the theory. First, we show
that --Frobenius algebras arising in global orbifold cohomology or K-theory
are most naturally defined as elements in the braided category of
\dkg--modules. Secondly, we obtain a geometric realization of the Drinfel'd
double as the global orbifold --theory of global quotient given by the
inertia variety of a point with a action on the one hand and more
stunningly a geometric realization of its representation ring in the braided
category sense as the full --theory of the stack . Finally, we show
how one can use the co-cycles above to twist a) the global orbifold
--theory of the inertia of a global quotient and more importantly b) the
stacky --theory of a global quotient . This corresponds to twistings
with a special type of 2--gerbe.Comment: 35 pages, no figure
A deep, high resolution survey of the low frequency radio sky
We report on the first wide-field, very long baseline interferometry (VLBI)
survey at 90 cm. The survey area consists of two overlapping 28 deg^2 fields
centred on the quasar J0226+3421 and the gravitational lens B0218+357. A total
of 618 sources were targeted in these fields, based on identifications from
Westerbork Northern Sky Survey (WENSS) data. Of these sources, 272 had flux
densities that, if unresolved, would fall above the sensitivity limit of the
VLBI observations. A total of 27 sources were detected as far as 2 arcdegrees
from the phase centre. The results of the survey suggest that at least 10% of
moderately faint (S~100 mJy) sources found at 90 cm contain compact components
smaller than ~0.1 to 0.3 arcsec and stronger than 10% of their total flux
densities. A ~90 mJy source was detected in the VLBI data that was not seen in
the WENSS and NRAO VLA Sky Survey (NVSS) data and may be a transient or highly
variable source that has been serendipitously detected. This survey is the
first systematic (and non-biased), deep, high-resolution survey of the
low-frequency radio sky. It is also the widest field of view VLBI survey with a
single pointing to date, exceeding the total survey area of previous higher
frequency surveys by two orders of magnitude. These initial results suggest
that new low frequency telescopes, such as LOFAR, should detect many compact
radio sources and that plans to extend these arrays to baselines of several
thousand kilometres are warranted.Comment: Accepted by The Astrophysical Journal. 39 pages, 4 figure
A Compact Extreme Scattering Event Cloud Towards AO 0235+164
We present observations of a rare, rapid, high amplitude Extreme Scattering
Event toward the compact BL-Lac AO 0235+164 at 6.65 GHz. The ESE cloud is
compact; we estimate its diameter between 0.09 and 0.9 AU, and is at a distance
of less than 3.6 kpc. Limits on the angular extent of the ESE cloud imply a
minimum cloud electron density of ~ 4 x 10^3 cm^-3. Based on the amplitude and
timescale of the ESE observed here, we suggest that at least one of the
transients reported by Bower et al. (2007) may be attributed to ESEs.Comment: 11 pages, 2 figure
Vortices on Higher Genus Surfaces
We consider the topological interactions of vortices on general surfaces. If
the genus of the surface is greater than zero, the handles can carry magnetic
flux. The classical state of the vortices and the handles can be described by a
mapping from the fundamental group to the unbroken gauge group. The allowed
configurations must satisfy a relation induced by the fundamental group. Upon
quantization, the handles can carry ``Cheshire charge.'' The motion of the
vortices can be described by the braid group of the surface. How the motion of
the vortices affects the state is analyzed in detail.Comment: 28 pages with 10 figures; uses phyzzx and psfig; Caltech preprint
CALT-68-187
Observation of Quantum Asymmetry in an Aharonov-Bohm Ring
We have investigated the Aharonov-Bohm effect in a one-dimensional
GaAs/GaAlAs ring at low magnetic fields. The oscillatory magnetoconductance of
these systems are for the first time systematically studied as a function of
density. We observe phase-shifts of in the magnetoconductance
oscillations, and halving of the fundamental period, as the density is
varied. Theoretically we find agreement with the experiment, by introducing an
asymmetry between the two arms of the ring.Comment: 4 pages RevTex including 3 figures, submitted to Phys. Rev.
Gamma-loud quasars: a view with BeppoSAX
We present SAX observations of the -ray emitting quasars
0836+710, 1510-089 and 2230+114. All the objects have been detected in the PDS
up to 100 keV and have extremely flat power-law spectra above 2 keV (=0.3--0.5). 0836+710 shows absorption higher than the galactic value and
marginal evidence for the presence of the redshifted 6.4 keV Iron line.
1510-089 shows a spectral break around 1 keV, with the low energy spectrum
steeper (=1.6) than the high energy power-law (=0.3). The
data are discussed in the light of current Inverse Compton models for the high
energy emission.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference
"X-Ray Astronomy '99", Bologna, Italy, September 199
Sigma models as perturbed conformal field theories
We show that two-dimensional sigma models are equivalent to certain perturbed
conformal field theories. When the fields in the sigma model take values in a
space G/H for a group G and a maximal subgroup H, the corresponding conformal
field theory is the limit of the coset model , and the
perturbation is related to the current of G. This correspondence allows us for
example to find the free energy for the "O(n)" (=O(n)/O(n-1)) sigma model at
non-zero temperature. It also results in a new approach to the CP^{n} model.Comment: 4 pages. v2: corrects typos (including several in the published
version
Higher Algebraic Structures and Quantization
We derive (quasi-)quantum groups in 2+1 dimensional topological field theory
directly from the classical action and the path integral. Detailed computations
are carried out for the Chern-Simons theory with finite gauge group. The
principles behind our computations are presumably more general. We extend the
classical action in a d+1 dimensional topological theory to manifolds of
dimension less than d+1. We then ``construct'' a generalized path integral
which in d+1 dimensions reduces to the standard one and in d dimensions
reproduces the quantum Hilbert space. In a 2+1 dimensional topological theory
the path integral over the circle is the category of representations of a
quasi-quantum group. In this paper we only consider finite theories, in which
the generalized path integral reduces to a finite sum. New ideas are needed to
extend beyond the finite theories treated here.Comment: 62 pages + 16 figures (revised version). In this revision we make
some small corrections and clarification
- …
