1,300 research outputs found
Correlation effects and orbital magnetism of Co clusters
Recent experiments on isolated Co clusters have shown huge orbital magnetic
moments in comparison with their bulk and surface counterparts. These clusters
hence provide the unique possibility to study the evolution of the orbital
magnetic moment with respect to the cluster size and how competing interactions
contribute to the quenching of orbital magnetism. We investigate here different
theoretical methods to calculate the spin and orbital moments of Co clusters,
and assess the performances of the methods in comparison with experiments. It
is shown that density functional theory in conventional local density or
generalized gradient approximations, or even with a hybrid functional, severely
underestimates the orbital moment. As natural extensions/corrections we
considered the orbital polarization correction, the LDA+U approximation as well
as the LDA+DMFT method. Our theory shows that of the considered methods, only
the LDA+DMFT method provides orbital moments in agreement with experiment, thus
emphasizing the importance of dynamic correlations effects for determining
fundamental magnetic properties of magnets in the nano-size regime
Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations
We have measured resonance strengths and energies for dielectronic
recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3
core excitations in the electron-ion collision energy range 0-45 eV. All
measurements were carried out using the heavy-ion Test Storage Ring at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also
carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the
AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor
agreement between our experimental and theoretical resonance energies and
strengths. From 25 to 42 eV we find good agreement between the two for
resonance energies. But in this energy range the theoretical resonance
strengths are ~ 31% larger than the experimental results. This is larger than
our estimated total experimental uncertainty in this energy range of +/- 26%
(at a 90% confidence level). Above 42 eV the difference in the shape between
the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly
to the nl dependence of the detection probabilities of high Rydberg states in
the experiment. We have used our measurements, supplemented by our
AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate
coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is
estimated to be accurate to better than +/- 29% (at a 90% confidence level) for
k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted
to form in photoionized plasmas, significant discrepancies are found between
our experimentally-derived rate coefficient and previously published
theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller
than our experimental results over this temperature range
Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network
The nematode Caenorhabditis elegans, with information on neural connectivity,
three-dimensional position and cell linage provides a unique system for
understanding the development of neural networks. Although C. elegans has been
widely studied in the past, we present the first statistical study from a
developmental perspective, with findings that raise interesting suggestions on
the establishment of long-distance connections and network hubs. Here, we
analyze the neuro-development for temporal and spatial features, using birth
times of neurons and their three-dimensional positions. Comparisons of growth
in C. elegans with random spatial network growth highlight two findings
relevant to neural network development. First, most neurons which are linked by
long-distance connections are born around the same time and early on,
suggesting the possibility of early contact or interaction between connected
neurons during development. Second, early-born neurons are more highly
connected (tendency to form hubs) than later born neurons. This indicates that
the longer time frame available to them might underlie high connectivity. Both
outcomes are not observed for random connection formation. The study finds that
around one-third of electrically coupled long-range connections are late
forming, raising the question of what mechanisms are involved in ensuring their
accuracy, particularly in light of the extremely invariant connectivity
observed in C. elegans. In conclusion, the sequence of neural network
development highlights the possibility of early contact or interaction in
securing long-distance and high-degree connectivity
Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory
Absolute total electron-ion recombination rate coefficients of argonlike
Sc3+(3s2 3p6) ions have been measured for relative energies between electrons
and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic
recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad
resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F
intermediate state is found at 12.31 +- 0.03 eV with a small experimental
evidence for an asymmetric line shape. From R-Matrix and perturbative
calculations we infer that the asymmetric line shape may not only be due to
quantum mechanical interference between direct and resonant recombination
channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but
may partly also be due to the interaction with an adjacent overlapping DR
resonance of the same symmetry. The overall agreement between theory and
experiment is poor. Differences between our experimental and our theoretical
resonance positions are as large as 1.4 eV. This illustrates the difficulty to
accurately describe the structure of an atomic system with an open 3d-shell
with state-of-the-art theoretical methods. Furthermore, we find that a
relativistic theoretical treatment of the system under study is mandatory since
the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D
resonances can only be explained when calculations beyond LS-coupling are
carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also:
http://www.strz.uni-giessen.de/~k
Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema
In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011
Atomic data for neutron-capture elements I. Photoionization and recombination properties of low-charge selenium ions
We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of
distorted-wave photoionization (PI) cross sections, and total and partial
final-state resolved radiative recombination (RR) and dielectronic
recombination (DR) rate coefficients for the first six ions of the trans-iron
element Se. These calculations were motivated by the recent detection of Se
emission lines in a large number of planetary nebulae. Se is a potentially
useful tracer of neutron-capture nucleosynthesis, but accurate determinations
of its abundance in photoionized nebulae have been hindered by the lack of
atomic data governing its ionization balance. Our calculations were carried out
in intermediate coupling with semi-relativistic radial wavefunctions. PI and
recombination data were determined for levels within the ground configuration
of each ion, and experimental PI cross-section measurements were used to
benchmark our results. For DR, we allowed dn=0 core excitations, which are
important at photoionized plasma temperatures. DR is the dominant recombination
process for each of these Se ions at temperatures representative of
photoionized nebulae (~10^4 K). To estimate the uncertainties of these data, we
compared results from three different configuration-interaction expansions for
each ion, and tested the sensitivity of the results to the radial scaling
factors in the structure calculations. We find that the internal uncertainties
are typically 30-50% for the direct PI cross sections and ~10% for the computed
RR rate coefficients, while those for low-temperature DR can be considerably
larger (from 15-30% up to two orders of magnitude) due to the unknown energies
of near-threshold autoionization resonances. The results are suitable for
incorporation into photoionization codes used to numerically simulate
astrophysical nebulae, and will enable robust determinations of nebular Se
abundances.Comment: 17 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
Screening of DUB activity and specificity by MALDI-TOF mass spectrometry
Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs
Recommended from our members
Dielectronic Recombination In Active Galactic Nuclei
XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII
Atomic data for neutron-capture elements II. Photoionization and recombination properties of low-charge krypton ions
We present multi-configuration Breit-Pauli distorted-wave photoionization
(PI) cross sections and radiative recombination (RR) and dielectronic
recombination (DR) rate coefficients for the first six krypton ions. These were
calculated with the AUTOSTRUCTURE code, using semi-relativistic radial
wavefunctions in intermediate coupling. Kr has been detected in several
planetary nebulae (PNe) and H II regions, and is a useful tracer of
neutron-capture nucleosynthesis. PI, RR, and DR data are required to accurately
correct for unobserved Kr ions in ionized nebulae, and hence to determine
elemental Kr abundances. PI cross sections have been determined for ground
configuration states of Kr^0--Kr^5+ up to 100 Rydbergs. Our Kr^+ PI
calculations were significantly improved through comparison with experimental
measurements. RR and DR rate coefficients were determined from the direct and
resonant PI cross sections at temperatures (10^1--10^7)z^2 K, where z is the
charge. We account for Delta n=0 DR core excitations, and find that DR is the
dominant recombination mechanism for all but Kr^+ at photoionized plasma
temperatures. Internal uncertainties are estimated by comparing results
computed with three different configuration-interaction expansions for each
ion, and by testing the sensitivity to variations in the orbital radial scaling
parameters. The PI cross sections are generally uncertain by 30-50% near the
ground state thresholds. Near 10^4 K, the RR rate coefficients are typically
uncertain by <10%, while those of DR exhibit uncertainties of factors of 2 to
3, due to the unknown energies of near-threshold autoionizing resonances. With
the charge transfer rate coefficients presented in the third paper of this
series, these data enable robust Kr abundance determinations in photoionized
nebulae for the first time.Comment: 19 pages, 8 figures. Accepted for publication in Astronomy &
Astrophysic
The Boundary Conditions of the Heliosphere: Photoionization Models Constrained by Interstellar and In Situ Data
The boundary conditions of the heliosphere are set by the ionization, density
and composition of inflowing interstellar matter. Constraining the properties
of the Local Interstellar Cloud (LIC) at the heliosphere requires radiative
transfer ionization models. We model the background interstellar radiation
field using observed stellar FUV and EUV emission and the diffuse soft X-ray
background. We also model the emission from the boundary between the LIC and
the hot Local Bubble (LB) plasma, assuming that the cloud is evaporating
because of thermal conduction. We create a grid of models covering a plausible
range of LIC and LB properties, and use the modeled radiation field as input to
radiative transfer/thermal equilibrium calculations using the Cloudy code. Data
from in situ observations of He^O, pickup ions and anomalous cosmic rays in the
heliosphere, and absorption line measurements towards epsilon CMa were used to
constrain the input parameters. A restricted range of assumed LIC HI column
densities and LB plasma temperatures produce models that match all the
observational constraints. The relative weakness of the constraints on N(HI)
and T_h contrast with the narrow limits predicted for the H^O and electron
density in the LIC at the Sun, n(H^0) = 0.19 - 0.20 cm^-3, and n(e) = 0.07 +/-
0.01 cm^-3. Derived abundances are mostly typical for low density gas, with
sub-solar Mg, Si and Fe, possibly subsolar O and N, and S about solar; however
C is supersolar. The interstellar gas at the Sun is warm, low density, and
partially ionized, with n(H) = 0.23 - 0.27 cm^-3, T = 6300 K, X(H^+) ~ 0.2, and
X(He^+) ~ 0.4. These results appear to be robust since acceptable models are
found for substantially different input radiation fields. Our results favor low
values for the reference solar abundances for the LIC composition.Comment: 14 pages, 4 figures, submitted to Astronomy & Astrophysics together
with papers from the International Space Sciences Institute workshop on
Interstellar Hydrogen in the Heliospher
- …
