106 research outputs found

    Measles and Rubella Incidence and Molecular Epidemiology in Senegal: Temporal and Regional Trends during Twelve Years of National Surveillance, 2010-2021.

    Get PDF
    We investigated the epidemiology of measles and rubella infections in Senegal based on data from twelve consecutive years of laboratory-based surveillance (2010-2021) and conducted phylogenetic analyses of circulating measles viruses. Sera from measles-suspected cases were collected and tested for measles and rubella-specific IgM antibodies using enzyme-linked immunosorbent assays (ELISA). Throat swabs were collected from patients with clinically diagnosed measles for confirmation by reverse-transcription polymerase chain reaction (RT-PCR) and viral genotyping. Among 8082 laboratory-tested specimens from measles-suspected cases, serological evidence of measles and rubella infection was confirmed in 1303/8082 (16.1%) and 465/6714 (6.9%), respectively. The incidence of rubella is now low-0.8 (95% CI 0.4-1.3) cases per million people in 2021-whereas progress towards measles pre-elimination targets (<1.0 case per million people per year) appears to have stalled; there were 10.8 (95% CI 9.3-12.5) cases per million people in 2021. Phylogenetic analyses revealed that all Senegalese measles strains belonged to genotype B3. The rubella virus sequence obtained in this study was consistent with genotype 1C. Our national surveillance data suggest that despite their low incidence both measles and rubella remain endemic in Senegal with a concerning stagnation in the decline of measles infections that represents a significant challenge to the goal of regional elimination

    Antibiotic susceptibility profile of Streptococcus pneumoniae isolated from acute respiratory infection in Dakar: a cross sectional study

    Get PDF
    Streptococcus pneumoniae is a pathogen causing pneumonia, meningitis, otitis and bacteraemia. Nowadays, S. pneumoniae is developing antibacterial resistance, particularly for those with reduced susceptibility to penicillin. The objective of this study was to assess the susceptibility profile of S. pneumoniae strains isolated from acute respiratory infections (ARIs) in children younger than 5 years of age in Dakar, Senegal. S. pneumoniae strains were isolated from broncho-alveolar lavages (BALs), nasopharyngeal swabs, and middle ear secretion from children in the Paediatric Department of Abass Ndao University Teaching Hospital and Paediatric Department of Roi Baudouin Hospital in Dakar, Senegal. The strains were cultivated on Columbia agar supplemented with 5% of horse blood and gentamicin (6 mg/L). Antibiotic susceptibility testing was performed using E-test method. A total of 34 strains of S. pneumoniae were isolated and identified in this study, among them 7 strains (20.58%) showed penicillin-resistance. Antibiotics such as amoxicillin/clavulanic acid (MIC90=0.036 μg/mL), cefuroxim (MIC90=0.38 μg/mL), cefixim (MIC90=1.5 μg/mL), as well as macrolides (azithromycin MIC90=1.5 μg/mL, clarithromycin MIC90=0.125 μg/mL) and fluoroquinolone (levofloxacin MIC90=1 μg/mL, ofloxacin MIC90=2 μg/mL) were mostly active. However, all S. pneumoniae strains were resistant to sulfamethoxazole/trimethoprim (MIC90: 32 μg/mL). Except of S. pneumoniae strains penicillin-resistance or reduced susceptibility, most strains were susceptible to β-lactams antibiotics commonly used in ARI treatment. Continuous surveillance of antimicrobial resistance patterns of pneumococcus strains is still crucial for effective control of ARIs in children

    Acute flaccid myelitis:cause, diagnosis, and management

    Get PDF
    Acute flaccid myelitis (AFM) is a disabling, polio-like illness mainly affecting children. Outbreaks of MM have occurred across multiple global regions since 2012, and the disease appears to be caused by non-polio enterovirus infection, posing a major public health challenge. The clinical presentation of flaccid and often profound muscle weakness (which can invoke respiratory failure and other critical complications) can mimic several other acute neurological illnesses. There is no single sensitive and specific test for MM, and the diagnosis relies on identification of several important clinical, neuroimaging, and cerebrospinal fluid characteristics. Following the acute phase of AFM, patients typically have substantial residual disability and unique long-term rehabilitation needs. In this Review we describe the epidemiology, clinical features, course, and outcomes of AFM to help to guide diagnosis, management, and rehabilitation. Future research directions include further studies evaluating host and pathogen factors, including investigations into genetic, viral, and immunological features of affected patients, host-virus interactions, and investigations of targeted therapeutic approaches to improve the long-term outcomes in this population

    Development of an amplicon-based sequencing approach in response to the global emergence of mpox

    Get PDF
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.This publication was made possible by CTSA Grant Number UL1 TR001863 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH) awarded to CBFV. INSA was partially funded by the HERA project (Grant/ 2021/PHF/23776) supported by the European Commission through the European Centre for Disease Control (to VB).info:eu-repo/semantics/publishedVersio

    National Surveillance of Acute Flaccid Paralysis Cases in Senegal during 2017 Uncovers the Circulation of Enterovirus Species A, B and C

    No full text
    Polioviruses have been eliminated in many countries; however, the number of acute flaccid paralysis cases has not decreased. Non-polio enteroviruses are passively monitored as part of the polio surveillance program. Previous studies have shown that some enteroviruses do not grow in conventional cell lines used for the isolation of poliovirus according to the WHO guidelines. In order to evaluate the presence of enteroviruses, real-time RT-PCR was performed on Human Rhabdomyosarcoma (RD)-positive and RD-negative stool samples. A total of 310 stool samples, collected from children under the age of 15 years with acute flaccid paralysis in Senegal in 2017, were screened using cell culture and real-time RT-PCR methods. The selected isolates were further characterized using Sanger sequencing and a phylogenetic tree was inferred based on VP1 sequences. Out of the 310 stool samples tested, 89 were positive in real-time RT-PCR. A total of 40 partial VP1 sequences were obtained and the classification analysis showed that 3 (13%), 19 (82.6%), and 1 (4.4%) sequences from 23 RD-positive non-polio enterovirus isolates and 3 (17.6%), 7 (41.1%), and 7 (41.1%) sequences from 17 RD-negative stool samples belonged to the species EV-A, B, and C, respectively. Interestingly, the EV-B sequences from RD-negative stool samples were grouped into three separate phylogenetic clusters. Our data exhibited also a high prevalence of the EV-C species in RD-negative stool samples. An active country-wide surveillance program of non-polio enteroviruses based on direct RT-PCR coupled with sequencing could be important not only for the rapid identification of the involved emergence or re-emergence enteroviruses, but also for the assessment of AFP’s severity associated with non-polio enteroviruses detected in Senegal

    National Surveillance of Acute Flaccid Paralysis Cases in Senegal during 2017 Uncovers the Circulation of Enterovirus Species A, B and C

    No full text
    Polioviruses have been eliminated in many countries; however, the number of acute flaccid paralysis cases has not decreased. Non-polio enteroviruses are passively monitored as part of the polio surveillance program. Previous studies have shown that some enteroviruses do not grow in conventional cell lines used for the isolation of poliovirus according to the WHO guidelines. In order to evaluate the presence of enteroviruses, real-time RT-PCR was performed on Human Rhabdomyosarcoma (RD)-positive and RD-negative stool samples. A total of 310 stool samples, collected from children under the age of 15 years with acute flaccid paralysis in Senegal in 2017, were screened using cell culture and real-time RT-PCR methods. The selected isolates were further characterized using Sanger sequencing and a phylogenetic tree was inferred based on VP1 sequences. Out of the 310 stool samples tested, 89 were positive in real-time RT-PCR. A total of 40 partial VP1 sequences were obtained and the classification analysis showed that 3 (13%), 19 (82.6%), and 1 (4.4%) sequences from 23 RD-positive non-polio enterovirus isolates and 3 (17.6%), 7 (41.1%), and 7 (41.1%) sequences from 17 RD-negative stool samples belonged to the species EV-A, B, and C, respectively. Interestingly, the EV-B sequences from RD-negative stool samples were grouped into three separate phylogenetic clusters. Our data exhibited also a high prevalence of the EV-C species in RD-negative stool samples. An active country-wide surveillance program of non-polio enteroviruses based on direct RT-PCR coupled with sequencing could be important not only for the rapid identification of the involved emergence or re-emergence enteroviruses, but also for the assessment of AFP’s severity associated with non-polio enteroviruses detected in Senegal.</jats:p

    Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human

    No full text
    We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic evidence of avian influenza virus (AIV) infection in pigs at interfaces with human populations in Senegal. Nasal swab and blood samples were collected on a weekly basis from the same animal immediately after slaughter. Influenza A viruses were diagnosed using RT-qPCR and a subset of positive samples for H3 and H1 subtypes were selected for full genome amplification and NGS sequencing. Serum samples were tested by HI assay for the detection of antibodies recognizing four AIVs, including H9N2, H5N1, H7N7 and H5N2. Between September 2018 and December 2019, 1691 swine nasal swabs were collected and tested. Influenza A virus was detected in 30.7% (520/1691), and A/H1N1pdm09 virus was the most commonly identified subtype with 38.07% (198/520), followed by A/H1N2 (16.3%) and A/H3N2 (5.2%). Year-round influenza activity was noted in pigs, with the highest incidence between June and September. Phylogenetic analyses revealed that the IAVs were closely related to human IAV strains belonging to A/H1N1pdm09 and seasonal H3N2 lineages. Genetic analysis revealed that Senegalese strains possessed several key amino acid changes, including D204 and N241D in the receptor binding site, S31N in the M2 gene and P560S in the PA protein. Serological analyses revealed that 83.5% (95%CI = 81.6&ndash;85.3) of the 1636 sera tested were positive for the presence of antibodies against either H9N2, H5N1, H7N7 or H5N2. Influenza H7N7 (54.3%) and H9N2 (53.6%) were the dominant avian subtypes detected in Senegalese pigs. Given the co-circulation of multiple subtypes of influenza viruses among Senegalese pigs, the potential exists for the emergence of new hybrid viruses of unpredictable zoonotic and pandemic potential in the future

    Molecular Epidemiology of Enterovirus A71 in Surveillance of Acute Flaccid Paralysis Cases in Senegal, 2013–2020

    No full text
    Enterovirus A71 (EV-A71) is a non-polio enterovirus that currently represents a major public health concern worldwide. In Africa, only sporadic cases have been reported. Acute flaccid paralysis and environmental surveillance programs have been widely used as strategies for documenting the circulation of polio and non-polio enteroviruses. To date, little is known about the molecular epidemiology of enterovirus A71 in Africa where resources and diagnostic capacities are limited. To fill this gap in Senegal, a total of 521 non-polio enterovirus isolates collected from both acute flaccid paralysis (AFP) and environmental surveillance (ES) programs between 2013 and 2020 were screened for enterovirus A71 using real-time RT-PCR. Positive isolates were sequenced, and genomic data were analyzed using phylogeny. An overall rate of 1.72% (9/521) of the analyzed isolates tested positive for enterovirus A71. All positive isolates originated from the acute flaccid paralysis cases, and 44.4% (4/9) of them were isolated in 2016. The nine newly characterized sequences obtained in our study included eight complete polyprotein sequences and one partial sequence of the VP1 gene, all belonging to the C genogroup. Seven out of the eight complete polyprotein sequences belonged to the C2 subgenotype, while one of them grouped with previous sequences from the C1 subgenotype. The partial VP1 sequence belonged to the C1 subgenotype. Our data provide not only new insights into the recent molecular epidemiology of enterovirus A71 in Senegal but also point to the crucial need to set up specific surveillance programs targeting non-polio enteroviruses at country or regional levels in Africa for rapid identification emerging or re-emerging enteroviruses and better characterization of public health concerns causing acute flaccid paralysis in children such as enterovirus A71. To estimate the real distribution of EV-A71 in Africa, more sero-epidemiological studies should be promoted, particularly in countries where the virus has already been reported.</jats:p
    corecore