409 research outputs found

    Large-scale structure and the Cardassian fluid

    Get PDF
    In this paper, we confront the predictions of the power law cardassian model for the baryon power spectrum with the observations of the SDSS galaxy survey. We show that they fit only for very unusual values of the cold dark matter or baryon density parameters, the Hubble parameter or the spectral index of the initial power spectrum. Moreover, the best-fit Cardassian models turn out to be phantom models. If one wants to recover the usual values for these constants, as quoted by the WMAP team, the power law Cardassian model turns out to be indistinguishable from a LCDM model

    CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe

    Get PDF
    The current authors have previously shown that inhomogeneous, but spherically symmetric universe models containing only matter can yield a very good fit to the SNIa data and the position of the first CMB peak. In this work we examine how far away from the center of inhomogeneity the observer can be located in these models and still fit the data well. Furthermore, we investigate whether such an off-center location can explain the observed alignment of the lowest multipoles of the CMB map. We find that the observer has to be located within a radius of 15 Mpc from the center for the induced dipole to be less than that observed by the COBE satellite. But for such small displacements from the center, the induced quadru- and octopoles turn out to be insufficiently large to explain the alignment.Comment: 8 pages (REVTeX4), 7 figures; v2: minor changes, matches published versio

    Entropy of gravitationally collapsing matter in FRW universe models

    Full text link
    We look at a gas of dust and investigate how its entropy evolves with time under a spherically symmetric gravitational collapse. We treat the problem perturbatively and find that the classical thermodynamic entropy does actually increase to first order when one allows for gravitational potential energy to be transferred to thermal energy during the collapse. Thus, in this situation there is no need to resort to the introduction of an intrinsic gravitational entropy in order to satisfy the second law of thermodynamics.Comment: 9 pages, 4 figures. Major changes from previous version. We consider only thermodynamic entropy in this version. Published in PR

    f(R) Gravities \`a la Brans-Dicke

    Full text link
    We extend f(R) theories via the addition of a fundamental scalar field. The approach is reminiscent of the dilaton field of string theory and the Brans-Dicke model. f(R) theories attracted much attention recently in view of their potential to explain the acceleration of the universe. Extending f(R) models to theories with scalars can be motivated from the low energy effective action of string theory. There, a fundamental scalar (the dilaton), has a non-minimal coupling to the Ricci scalar. Furthermore beyond tree level actions will contain terms having higher (or lower) powers of R compared to the canonical Einstein-Hilbert term. Theories with f(R) will contain an extra scalar degree on top of the ad-hoc dilaton and mixing of these two modes around a stable solution is a concern. In this work we show that no mixing condition mandates the form V1(ϕ)f(R)+V2(ϕ)R2V_{1}(\phi)f(R)+V_{2}(\phi)R^{2} for the action

    Conformal Transformations in Metric-Affine Gravity and Ghosts

    Get PDF
    Conformal transformations play a widespread role in gravity theories in regard to their cosmological and other implications. In the pure metric theory of gravity, conformal transformations change the frame to a new one wherein one obtains a conformal-invariant scalar-tensor theory such that the scalar field, deriving from the conformal factor, is a ghost. In this work, conformal transformations and ghosts will be analyzed in the framework of the metric-affine theory of gravity. Within this framework, metric and connection are independent variables, and hence, transform independently under conformal transformations. It will be shown that, if affine connection is invariant under conformal transformations then the scalar field under concern is a non-ghost, non-dynamical field. It is an auxiliary field at the classical level, and might develop a kinetic term at the quantum level. Alternatively, if connection transforms additively with a structure similar to yet more general than that of the Levi-Civita connection, the resulting action describes the gravitational dynamics correctly, and more importantly, the scalar field becomes a dynamical non-ghost field. The equations of motion, for generic geometrical and matter-sector variables, do not reduce connection to the Levi-Civita connection, and hence, independence of connection from metric is maintained. Therefore, metric-affine gravity provides an arena in which ghosts arising from conformal factor are avoided thanks to the independence of connection from the metric.Comment: 12 p

    Age of the Universe in the Cardassian Model

    Full text link
    The age of the universe is obtained in a subset of Cardassian models by using WMAP data. Cardassian expansion is a modification to the Friedmann equation that allows the universe to be flat, matter dominated, and accelerating, without a vacuum component. Since this model changes the evolution of the universe, we should not a priori expect the Cardassian age to be the same as the WMAP Friedmann derived result of 13.7 +/- 0.2 Gyrs. However, in the subset of Cardassian models we consider, we discover that the age of the universe varies from 13.4 - 13.8 Gyr over the range of parameter space we explore, a result close to that of the standard Lambda Cold Dark Matter model. The Hubble constant h, which may also vary in these models, likewise varies little from the Friedmann result.Comment: 11 pages, two eps figures. v2: clarified choice of parameters, other minor changes. v3: added references, other changes to match version to be published in JCA

    Exponential Cardassian Universe

    Full text link
    The expectation of explaining cosmological observations without requiring new energy sources is forsooth worthy of investigation. In this letter, a new kind of Cardassian models, called exponential Cardassian models, for the late-time universe are investigated in the context of the spatially flat FRW universe scenario. We fit the exponential Cardassian models to current type Ia supernovae data and find they are consistent with the observations. Furthermore, we point out that the equation-of-state parameter for the effective dark fluid component in exponential Cardassian models can naturally cross the cosmological constant divide w=1w=-1 that observations favor mildly without introducing exotic material that destroy the weak energy condition.Comment: 14 pages, 5 eps figures, using Latex with elsart.cls; references added ; typos corrected and a dicussion on the CMB spectrum effect is adde

    Duality extended Chaplygin cosmologies with a big rip

    Get PDF
    We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show those modifications can be framed within a theory with self-interacting gravity, where the term self-interaction refers here to the presence of functions of ρ\rho and pp in the right hand side of the Einstein equations. We then discuss the construction of the duals of the cosmologies generated within that framework. After that we investigate the modifications required to generate generalized and modified Chaplygin cosmologies and show that their duals belong to a larger family of cosmologies we call extended Chaplygin cosmologies. Finally, by letting the parameters of those models take values not earlier considered in the literature we show some representatives of that family of cosmologies display sudden future singularities, which indicates their behavior is rather different from generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe.Comment: 5 pages, revtex

    Dirac Cosmology and the Acceleration of the Contemporary Universe

    Full text link
    A model is suggested to unify the Einstein GR and Dirac Cosmology. There is one adjusted parameter b2b_2 in our model. After adjusting the parameter b2b_2 in the model by using the supernova data, we have calculated the gravitational constant Gˉ\bar G and the physical quantities of a(t)a(t), q(t)q(t) and ρr(t)/ρb(t)\rho_r(t)/ \rho_b(t) by using the present day quantities as the initial conditions and found that the equation of state parameter wθw_{\theta} equals to -0.83, the ratio of the density of the addition creation ΩΛ=0.8\Omega_{\Lambda}=0.8 and the ratio of the density of the matter including multiplication creation, radiation and normal matter Ωm=0.2\Omega_m =0.2 at present. The results are self-consistent and in good agreement with present knowledge in cosmology. These results suggest that the addition creation and multiplication creation in Dirac cosmology play the role of the dark energy and dark matter.Comment: 13 pages, 8 figure
    corecore