199 research outputs found

    Large-scale structure and the Cardassian fluid

    Get PDF
    In this paper, we confront the predictions of the power law cardassian model for the baryon power spectrum with the observations of the SDSS galaxy survey. We show that they fit only for very unusual values of the cold dark matter or baryon density parameters, the Hubble parameter or the spectral index of the initial power spectrum. Moreover, the best-fit Cardassian models turn out to be phantom models. If one wants to recover the usual values for these constants, as quoted by the WMAP team, the power law Cardassian model turns out to be indistinguishable from a LCDM model

    Age of the Universe in the Cardassian Model

    Full text link
    The age of the universe is obtained in a subset of Cardassian models by using WMAP data. Cardassian expansion is a modification to the Friedmann equation that allows the universe to be flat, matter dominated, and accelerating, without a vacuum component. Since this model changes the evolution of the universe, we should not a priori expect the Cardassian age to be the same as the WMAP Friedmann derived result of 13.7 +/- 0.2 Gyrs. However, in the subset of Cardassian models we consider, we discover that the age of the universe varies from 13.4 - 13.8 Gyr over the range of parameter space we explore, a result close to that of the standard Lambda Cold Dark Matter model. The Hubble constant h, which may also vary in these models, likewise varies little from the Friedmann result.Comment: 11 pages, two eps figures. v2: clarified choice of parameters, other minor changes. v3: added references, other changes to match version to be published in JCA

    Duality extended Chaplygin cosmologies with a big rip

    Get PDF
    We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show those modifications can be framed within a theory with self-interacting gravity, where the term self-interaction refers here to the presence of functions of ρ\rho and pp in the right hand side of the Einstein equations. We then discuss the construction of the duals of the cosmologies generated within that framework. After that we investigate the modifications required to generate generalized and modified Chaplygin cosmologies and show that their duals belong to a larger family of cosmologies we call extended Chaplygin cosmologies. Finally, by letting the parameters of those models take values not earlier considered in the literature we show some representatives of that family of cosmologies display sudden future singularities, which indicates their behavior is rather different from generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe.Comment: 5 pages, revtex

    Gradient expansion(s) and dark energy

    Full text link
    Motivated by recent claims stating that the acceleration of the present Universe is due to fluctuations with wavelength larger than the Hubble radius, we present a general analysis of various perturbative solutions of fully inhomogeneous Einstein equations supplemented by a perfect fluid. The equivalence of formally different gradient expansions is demonstrated. If the barotropic index vanishes, the deceleration parameter is always positive semi-definite.Comment: 17 pages, no figure

    The present universe in the Einstein frame, metric-affine R+1/R gravity

    Full text link
    We study the present, flat isotropic universe in 1/R-modified gravity. We use the Palatini (metric-affine) variational principle and the Einstein (metric-compatible connected) conformal frame. We show that the energy density scaling deviates from the usual scaling for nonrelativistic matter, and the largest deviation occurs in the present epoch. We find that the current deceleration parameter derived from the apparent matter density parameter is consistent with observations. There is also a small overlap between the predicted and observed values for the redshift derivative of the deceleration parameter. The predicted redshift of the deceleration-to-acceleration transition agrees with that in the \Lambda-CDM model but it is larger than the value estimated from SNIa observations.Comment: 11 pages; published versio

    Dirac Cosmology and the Acceleration of the Contemporary Universe

    Full text link
    A model is suggested to unify the Einstein GR and Dirac Cosmology. There is one adjusted parameter b2b_2 in our model. After adjusting the parameter b2b_2 in the model by using the supernova data, we have calculated the gravitational constant Gˉ\bar G and the physical quantities of a(t)a(t), q(t)q(t) and ρr(t)/ρb(t)\rho_r(t)/ \rho_b(t) by using the present day quantities as the initial conditions and found that the equation of state parameter wθw_{\theta} equals to -0.83, the ratio of the density of the addition creation ΩΛ=0.8\Omega_{\Lambda}=0.8 and the ratio of the density of the matter including multiplication creation, radiation and normal matter Ωm=0.2\Omega_m =0.2 at present. The results are self-consistent and in good agreement with present knowledge in cosmology. These results suggest that the addition creation and multiplication creation in Dirac cosmology play the role of the dark energy and dark matter.Comment: 13 pages, 8 figure

    Ellipsoidal configurations in the de Sitter spacetime

    Full text link
    The cosmological constant Λ\Lambda modifies certain properties of large astrophysical rotating configurations with ellipsoidal geometries, provided the objects are not too compact. Assuming an equilibrium configuration and so using the tensor virial equation with Λ\Lambda we explore several equilibrium properties of homogeneous rotating ellipsoids. One shows that the bifurcation point, which in the oblate case distinguishes the Maclaurin ellipsoid from the Jacobi ellipsoid, is sensitive to the cosmological constant. Adding to that, the cosmological constant allows triaxial configurations of equilibrium rotating the minor axis as solutions of the virial equations. The significance of the result lies in the fact that minor axis rotation is indeed found in nature. Being impossible for the oblate case, it is permissible for prolate geometries, with Λ\Lambda zero and positive. For the triaxial case, however, an equilibrium solution is found only for non-zero positive Λ\Lambda. Finally, we solve the tensor virial equation for the angular velocity and display special effects of the cosmological constant there.Comment: 15 pages, 11 figures, published in Class. Quant. Grav. References adde

    Constraining f(R) gravity in the Palatini formalism

    Full text link
    Although several models of f(R)f(R) theories of gravity within the Palatini approach have been studied already, the interest was concentrated on those that have an effect on the late-time evolution of the universe, by the inclusion for example of terms inversely proportional to the scalar curvature in the gravitational action. However, additional positive powers of the curvature also provide interesting early-time phenomenology, like inflation, and the presence of such terms in the action is equally, if not more, probable. In the present paper models with both additional positive and negative powers of the scalar curvature are studied. Their effect on the evolution of the universe is investigated for all cosmological eras, and various constraints are put on the extra terms in the actions. Additionally, we examine the extent to which the new terms in positive powers affect the late-time evolution of the universe and the related observables, which also determines our ability to probe their presence in the gravitational action.Comment: reference update and minor changes to match published versio

    Cosmic Acceleration Driven by Mirage Inhomogeneities

    Full text link
    A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X S_5 bulk is introduced. Although there is no special points in the bulk, the brane Universe has a center and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the center, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early time acceleration, it is shown that the early stage accelerating phase ends in a dust dominated FRW homogeneous Universe. Mirage-driven acceleration thus provides a dark matter component for the brane Universe final state. We finally show that the model fulfills the current constraints on inhomogeneities.Comment: 14 pages, 1 figure, IOP style. v2, changed style, minor corrections, references added, version accepted in Class. Quant. Gra

    Cosmological perturbations in the Palatini formulation of modified gravity

    Full text link
    Cosmology in extended theories of gravity is considered assuming the Palatini variational principle, for which the metric and connection are independent variables. The field equations are derived to linear order in perturbations about the homogeneous and isotropic but possibly spatially curved background. The results are presented in a unified form applicable to a broad class of gravity theories allowing arbitrary scalar-tensor couplings and nonlinear dependence on the Ricci scalar in the gravitational action. The gauge-ready formalism exploited here makes it possible to obtain the equations immediately in any of the commonly used gauges. Of the three type of perturbations, the main attention is on the scalar modes responsible for the cosmic large-scale structure. Evolution equations are derived for perturbations in a late universe filled with cold dark matter and accelerated by curvature corrections. Such corrections are found to induce effective pressure gradients which are problematical in the formation of large-scale structure. This is demonstrated by analytic solutions in a particular case. A physical equivalence between scalar-tensor theories in metric and in Palatini formalisms is pointed out.Comment: 14 pages; the published version (+ an appendix). Corrected typos in eqs. 30,33 and B
    corecore