227 research outputs found
Generation of integration-free neural progenitor cells from cells in human urine
Human neural stem cells hold great promise for research and therapy in neural disease. We describe the generation of integration-free and expandable human neural progenitor cells (NPCs). We combined an episomal system to deliver reprogramming factors with a chemically defined culture medium to reprogram epithelial-like cells from human urine into NPCs (hUiNPCs). These transgene-free hUiNPCs can self-renew and can differentiate into multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo analysis is still needed, we report that the cells survive and differentiate upon transplant into newborn rat brain.postprin
Recommended from our members
Dysregulation of miRNA expression and excitation in MEF2C autism patient hiPSC-neurons and cerebral organoids
MEF2C is a critical transcription factor in neurodevelopment, whose loss-of-function mutation in humans results in MEF2C haploinsufficiency syndrome (MHS), a severe form of autism spectrum disorder (ASD)/intellectual disability (ID). Despite prior animal studies of MEF2C heterozygosity to mimic MHS, MHS-specific mutations have not been investigated previously, particularly in a human context as hiPSCs afford. Here, for the first time, we use patient hiPSC-derived cerebrocortical neurons and cerebral organoids to characterize MHS deficits. Unexpectedly, we found that decreased neurogenesis was accompanied by activation of a micro-(mi)RNA-mediated gliogenesis pathway. We also demonstrate network-level hyperexcitability in MHS neurons, as evidenced by excessive synaptic and extrasynaptic activity contributing to excitatory/inhibitory (E/I) imbalance. Notably, the predominantly extrasynaptic (e)NMDA receptor antagonist, NitroSynapsin, corrects this aberrant electrical activity associated with abnormal phenotypes. During neurodevelopment, MEF2C regulates many ASD-associated gene networks, suggesting that treatment of MHS deficits may possibly help other forms of ASD as well
Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells
Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD
Predicting involvement of polycomb repressive complex 2 in direct conversion of mouse fibroblasts into induced neural stem cells
An “Orphan” Finds a Home in NSC Regulation
Small molecules that can alter stem cell fate are of immense biological and therapeutic values. In this issue of Chemistry & Biology, Saxe and colleagues [1] report a chemical genetic screen that identified an orphan ligand, P-Ser, which can modulate neural stem/progenitor cell fate
Direct lineage reprogramming to neural cells
Recently we have witnessed an array of studies on direct reprogramming that describe induced inter conversion of mature cell types from higher organisms including human. While these studies reveal an unexpected level of plasticity of differentiated somatic cells, they also provide unprecedented opportunities to develop regenerative therapies for many debilitating disorders and model these 'diseases-in-a-dish' for studying their pathophysiology. Here we review the current state of the art in direct lineage reprogramming to neural cells, and discuss the challenges that need to be addressed toward achieving the full potential of this exciting new technology
Direct Reprogramming of Adult Human Fibroblasts to Functional Neurons under Defined Conditions
SummaryHuman induced pluripotent stem cells (hiPSCs) have been generated by reprogramming a number of different somatic cell types using a variety of approaches. In addition, direct reprogramming of mature cells from one lineage to another has emerged recently as an alternative strategy for generating cell types of interest. Here we show that a combination of a microRNA (miR-124) and two transcription factors (MYT1L and BRN2) is sufficient to directly reprogram postnatal and adult human primary dermal fibroblasts (mesoderm) to functional neurons (ectoderm) under precisely defined conditions. These human induced neurons (hiNs) exhibit typical neuronal morphology and marker gene expression, fire action potentials, and produce functional synapses between each other. Our findings have major implications for cell-replacement strategies in neurodegenerative diseases, disease modeling, and neural developmental studies
- …
