42 research outputs found
Hybrid Quantum and Classical Mechanical Monte Carlo Simulations of the Interaction of Hydrogen Chloride with Solid Water Clusters
Monte Carlo simulations using a hybrid quantum and classical mechanical
potential were performed for crystal and amorphous-like HCl-water(n) clusters
The subsystem composed by HCl and one water molecule was treated within Density
Functional Theory, and a classical force field was used for the rest of the
system. Simulations performed at 200 K suggest that the energetic feasibility
of HCl dissociation strongly depends on its initial placement within the
cluster. An important degree of ionization occurs only if HCl is incorporated
into the surface. We observe that local melting does not play a crucial role in
the ionization process.Comment: 14 Latex pages with 4 postscript figures, to appear in Chem. Phys.
Let
IL-4 induces cAMP and cGMP in human monocytic cells
Human monocytes, preincubated with IFN-γ respond to IL-4 by a cGMP increase through activation of an inducible NO synthase. Here, IL-4 was found to induce an accumulation of cGMP (1 – 3 min) and cAMP (20 – 25 min) in unstimulated monocytes. This was impaired with NOS inhibitors, but also with EGTA and calcium/calmodulin inhibitors. These results suggest that: (1) IL-4 may stimulate different NOS isoforms in resting and IFN-γ activated monocytes, and (2) cAMP accumulation may be partially dependent on the NO pathway. By RT-PCR, a type III constitutive NOS mRNA was detected in U937 monocytic cells. IL-4 also increased the [Ca2+]i in these cells. Different NOS may thus be expressed in monocytic cells depending on their differentiation and the signals they receive
Adult Body Weight Is Programmed by a Redox-Regulated and Energy-Dependent Process during the Pronuclear Stage in Mouse
In mammals fertilization triggers a series of Ca2+ oscillations that not only are essential for events of egg activation but also stimulate oxidative phosphorylation. Little is known, however, about the relationship between quantitative changes in egg metabolism and specific long-term effects in offspring. This study assessed whether post-natal growth is modulated by early transient changes in NAD(P)H and FAD2+ in zygotes. We report that experimentally manipulating the redox potential of fertilized eggs during the pronuclear (PN) stage affects post-natal body weight. Exogenous pyruvate induces NAD(P)H oxidation and stimulates mitochondrial activity with resulting offspring that are persistently and significantly smaller than controls. Exogenous lactate stimulates NAD+ reduction and impairs mitochondrial activity, and produces offspring that are smaller than controls at weaning but catch up after weaning. Cytosolic alkalization increases NAD(P)+ reduction and offspring of normal birth-weight become significantly and persistently larger than controls. These results constitute the first report that post-natal growth rate is ultimately linked to modulation of NAD(P)H and FAD2+ concentration as early as the PN stage
Collective mass spectrometry approaches reveal broad and combinatorial modification of high mobility group protein A1a
Mechanism of Action of Xenobiotics: From Molecular Spectral Studies to Microspectrofluorometry of Living Cells
Spectrum and structure of water-rich water—hydracid complexes from matrix isolation spectroscopy: evidence for proton transfer
Asymmetrical DNA and AT/GC base content of differential sector of Pleurodeles waltl sexual bivalent: a quantitative fluorescence imaging analysis in lamprush chromosomes
International audienc
Functional and Molecular Reorganization of the Nucleolar Apparatus in Maturing Mouse Oocytes
AbstractIn mammalian preovulatory oocytes, rRNA synthesis is down-regulated until egg fertilization and zygotic genome reactivation, but the underlying regulatory mechanisms of this phenomenon are poorly characterized. We examined the molecular organization of the rRNA synthesis and processing machineries in fully grown mouse oocytes in relation to ongoing rDNA transcription and oocyte progression throughout meiosis. We show that, at the germinal vesicle stage, the two RNA polymerase I (RNA pol I) subunits, RPA116 and PAF53/RPA53, and the nucleolar upstream binding factor (UBF) remain present irrespective of ongoing rDNA transcription and colocalize in stoichiometric amounts within discrete foci at the periphery of the nucleolus-like bodies. These foci are spatially associated with the early pre-rRNA processing protein fibrillarin and in part with the pre-ribosome assembly factor B23/nucleophosmin. After germinal vesicle breakdown, the RNA pol I complex disassembles in a step-wise manner from chromosomes, while UBF remains associated with chromosomes until late prometaphase I. Dislodging of UBF, but not of RNA pol I, is impaired by the phosphatase inhibitor okadaic acid, thus strengthening the idea of a relationship between UBF dynamics and protein phosphorylation. Since neither RNA pol I, UBF, fibrillarin, nor B23 is detected at metaphase II, i.e., the normal stage of fertilization, we conclude that these nucleolar proteins are not transported to fertilized eggs by maternal chromosomes. Together, these data demonstrate an essential difference in the dynamics of the major nucleolar proteins during mitosis and meiosis
