21 research outputs found

    Single cell fertilizer (SCF): Evidence to prove that bio-molecules are potent nutrient for plant growth

    Get PDF
    Fertilizers of various kinds are used for the cultivation of crop plants for hyper production of plant based food materials. The study used bio-molecules made in a bacterial cell. The experimental results showed tremendous effect on plant growth. These cellular molecules were made by treating the bacterial cells with lysozyme and protenase K. The wet/weight was increased in multiple folds compared to that of control sets. The fold of increase was 4.79 for rice, 2.77 for wheat, 1.89 for gram and 1.89 for pea when bacterial cellular molecules were used as fertilizer

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms

    Full text link
    In the present study, machine learning algorithms have been used to predict residual stress during electron beam welding of stainless steel using the information of input process parameters and natural frequency of vibrations. Accelerating voltage, beam current and welding speed have been considered as input process parameters. Both residual stress and natural frequencies of vibration of the weld obtained using each set of the input parameters are measured experimentally. A number of machine learning algorithms, namely M5 algorithm-based Model Trees Regression, Random forest, Support Vector Regression, Reduced Error Pruning Tree, Multi-layer perceptron, Instance-based k-nearest neighbor algorithm, and Locally weighted learning have been used for the said purpose. Support vector regression and Locally weighted learning are found to perform consistently good and bad, respectively. The predicted welding residual stresses have been validated experimentally through X-ray diffraction (XRD) and good agreements are obtained. In addition, statistical tests are conducted, and the estimated reliability values of the employed models are analyzed through Monte-Carlo simulations. </jats:p

    Single cell fertilizer (SCF): Evidence to prove that bio-molecules are potent nutrient for plant growth

    No full text
    AbstractFertilizers of various kinds are used for the cultivation of crop plants for hyper production of plant based food materials. The study used bio-molecules made in a bacterial cell. The experimental results showed tremendous effect on plant growth. These cellular molecules were made by treating the bacterial cells with lysozyme and protenase K. The wet/weight was increased in multiple folds compared to that of control sets. The fold of increase was 4.79 for rice, 2.77 for wheat, 1.89 for gram and 1.89 for pea when bacterial cellular molecules were used as fertilizer.</jats:p
    corecore