21 research outputs found
Single cell fertilizer (SCF): Evidence to prove that bio-molecules are potent nutrient for plant growth
Fertilizers of various kinds are used for the cultivation of crop plants for hyper production of plant based food materials. The study used bio-molecules made in a bacterial cell. The experimental results showed tremendous effect on plant growth. These cellular molecules were made by treating the bacterial cells with lysozyme and protenase K. The wet/weight was increased in multiple folds compared to that of control sets. The fold of increase was 4.79 for rice, 2.77 for wheat, 1.89 for gram and 1.89 for pea when bacterial cellular molecules were used as fertilizer
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Prediction of residual stress in electron beam welding of stainless steel from process parameters and natural frequency of vibrations using machine-learning algorithms
In the present study, machine learning algorithms have been used to predict residual stress during electron beam welding of stainless steel using the information of input process parameters and natural frequency of vibrations. Accelerating voltage, beam current and welding speed have been considered as input process parameters. Both residual stress and natural frequencies of vibration of the weld obtained using each set of the input parameters are measured experimentally. A number of machine learning algorithms, namely M5 algorithm-based Model Trees Regression, Random forest, Support Vector Regression, Reduced Error Pruning Tree, Multi-layer perceptron, Instance-based k-nearest neighbor algorithm, and Locally weighted learning have been used for the said purpose. Support vector regression and Locally weighted learning are found to perform consistently good and bad, respectively. The predicted welding residual stresses have been validated experimentally through X-ray diffraction (XRD) and good agreements are obtained. In addition, statistical tests are conducted, and the estimated reliability values of the employed models are analyzed through Monte-Carlo simulations. </jats:p
Artificial Intervertebral Disc Replacement to Provide Dynamic Stability to the Lumbar Spine: A Finite Element Study
A RELOOK INTO THE CLINICO - PATHOLOGICAL ASPECTS OF LEPTOSPIRA INFECTION IN PATIENTS PRESENTING WITH FEVER IN A TERTIARY CARE HOSPITAL
Single cell fertilizer (SCF): Evidence to prove that bio-molecules are potent nutrient for plant growth
AbstractFertilizers of various kinds are used for the cultivation of crop plants for hyper production of plant based food materials. The study used bio-molecules made in a bacterial cell. The experimental results showed tremendous effect on plant growth. These cellular molecules were made by treating the bacterial cells with lysozyme and protenase K. The wet/weight was increased in multiple folds compared to that of control sets. The fold of increase was 4.79 for rice, 2.77 for wheat, 1.89 for gram and 1.89 for pea when bacterial cellular molecules were used as fertilizer.</jats:p
