1,043 research outputs found

    Efficient Data Representation by Selecting Prototypes with Importance Weights

    Full text link
    Prototypical examples that best summarizes and compactly represents an underlying complex data distribution communicate meaningful insights to humans in domains where simple explanations are hard to extract. In this paper we present algorithms with strong theoretical guarantees to mine these data sets and select prototypes a.k.a. representatives that optimally describes them. Our work notably generalizes the recent work by Kim et al. (2016) where in addition to selecting prototypes, we also associate non-negative weights which are indicative of their importance. This extension provides a single coherent framework under which both prototypes and criticisms (i.e. outliers) can be found. Furthermore, our framework works for any symmetric positive definite kernel thus addressing one of the key open questions laid out in Kim et al. (2016). By establishing that our objective function enjoys a key property of that of weak submodularity, we present a fast ProtoDash algorithm and also derive approximation guarantees for the same. We demonstrate the efficacy of our method on diverse domains such as retail, digit recognition (MNIST) and on publicly available 40 health questionnaires obtained from the Center for Disease Control (CDC) website maintained by the US Dept. of Health. We validate the results quantitatively as well as qualitatively based on expert feedback and recently published scientific studies on public health, thus showcasing the power of our technique in providing actionability (for retail), utility (for MNIST) and insight (on CDC datasets) which arguably are the hallmarks of an effective data mining method.Comment: Accepted for publication in International Conference on Data Mining (ICDM) 201

    Fractal basins of convergence of libration points in the planar Copenhagen problem with a repulsive quasi-homogeneous Manev-type potential

    Full text link
    The Newton-Raphson basins of convergence, corresponding to the coplanar libration points (which act as attractors), are unveiled in the Copenhagen problem, where instead of the Newtonian potential and forces, a quasi-homogeneous potential created by two primaries is considered. The multivariate version of the Newton-Raphson iterative scheme is used to reveal the attracting domain associated with the libration points on various type of two-dimensional configuration planes. The correlations between the basins of convergence and the corresponding required number of iterations are also presented and discussed in detail. The present numerical analysis reveals that the evolution of the attracting domains in this dynamical system is very complicated, however, it is a worth studying issue.Comment: Published in International Journal of Non-Linear Mechanics (IJNLM
    corecore