3,295 research outputs found

    A General Method for Selecting Quantum Channel for Bidirectional Controlled State Teleportation and Other Schemes of Controlled Quantum Communication

    Full text link
    Recently, a large number of protocols for bidirectional controlled state teleportation (BCST) have been proposed using nn-qubit entangled states (n{5,6,7}n\in\{5,6,7\}) as quantum channel. Here, we propose a general method of selecting multi-qubit (n>4)(n>4) quantum channels suitable for BCST and show that all the channels used in the existing protocols of BCST can be obtained using the proposed method. Further, it is shown that the quantum channels used in the existing protocols of BCST forms only a negligibly small subset of the set of all the quantum channels that can be constructed using the proposed method to implement BCST. It is also noted that all these quantum channels are also suitable for controlled bidirectional remote state preparation (CBRSP). Following the same logic, methods for selecting quantum channels for other controlled quantum communication tasks, such as controlled bidirectional joint remote state preparation (CJBRSP) and controlled quantum dialogue, are also provided.Comment: 8 pages, no figur

    Higher order nonclassicalities of finite dimensional coherent states: A comparative study

    Full text link
    Conventional coherent states (CSs) are defined in various ways. For example, CS is defined as an infinite Poissonian expansion in Fock states, as displaced vacuum state, or as an eigenket of annihilation operator. In the infinite dimensional Hilbert space, these definitions are equivalent. However, these definitions are not equivalent for the finite dimensional systems. In this work, we present a comparative description of the lower- and higher-order nonclassical properties of the finite dimensional CSs which are also referred to as qudit CSs (QCSs). For the comparison, nonclassical properties of two types of QCSs are used: (i) nonlinear QCS produced by applying a truncated displacement operator on the vacuum and (ii) linear QCS produced by the Poissonian expansion in Fock states of the CS truncated at (d-1)-photon Fock state. The comparison is performed using a set of nonclassicality witnesses (e.g., higher order antiubunching, higher order sub-Poissonian statistics, higher order squeezing, Agarwal-Tara parameter, Klyshko's criterion) and a set of quantitative measures of nonclassicality (e.g., negativity potential, concurrence potential and anticlassicality). The higher order nonclassicality witness have found to reveal the existence of higher order nonclassical properties of QCS for the first time.Comment: A comparative description of the higher-order nonclassical properties of the finite dimensional coherent state
    corecore