83 research outputs found
Recommended from our members
The dilemma of fossil fuel use and global climate change
The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility
Structure and origin of the J Anomaly Ridge, western North Atlantic Ocean
Author Posting. © American Geophysical Union, 1982. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 87, no. B11 (1982): 9389–9407, doi:10.1029/JB087iB11p09389.The J Anomaly Ridge is a structural ridge or step in oceanic basement that extends southwest from the eastern end of the Grand Banks. It lies beneath the J magnetic anomaly at the young end (M-4 to M-0) of the M series magnetic anomalies. Its structural counterpart beneath the J anomaly in the eastern Atlantic is the Madeira-Tore Rise, but this feature has been overprinted by post-middle Cretaceous deformation and volcanism. In order to study the origin and evolution of the J Anomaly Ridge-Madeira-Tore Rise system, we obtained seismic refraction and multichannel reflection profiles across the J Anomaly Ridge near 39°N latitude. The western ridge flank consists of a series of crustal blocks downdropped along west-dipping normal faults, but the eastern slope to younger crust is gentle and relatively unfaulted. The western flank also is subparallel to seafloor isochrons, becoming younger to the south. Anomalously smooth basement caps the ridge crest, and it locally exhibits internal, eastward-dipping reflectors similar in configuration to those within subaerially emplaced basalt flows on Iceland. When isostatically corrected for sediment load, the northern part of the J Anomaly Ridge has basement depths about 1400 m shallower than in our study area, and deep sea drilling has shown that the northern ridge was subaerially exposed during the middle Cretaceous. We suggest that most of the system originated under subaerial conditions at the time of late-stage rifting between the adjacent Grand Banks and Iberia. The excess magma required to form the ridge may have been vented from a mantle plume beneath the Grand Banks-Iberia rift zone and channelled southward beneath the rift axis of the abutting Mid-Atlantic Ridge. Resulting edifice-building volcanism constructed the ridge system between anomalies M-4 and M-0, moving southward along the ridge axis at about 50 mm/yr. About M-0 time, when true drift began between Iberia and the Grand Banks, this southward venting rapidly declined. The results were rapid return of the spreading axis to normal elevations, division of the ridge system into the separate J Anomaly Ridge and Madeira-Tore Rise, and unusually fast subsidence of at least parts of these ridges to depths that presently are near normal. This proposed origin and evolutionary sequence for the J Anomaly Ridge-Madeira-Tore Rise system closely matches events of uplift and unconformity development on the adjacent Grand Banks.This research was supported by the Office of Naval Research, contracts N00014-75-C-0210 and N00014-80-C-0098 to Lamont-Doherty Geological Observatory and contract N00014-79-C-0071 to Woods Hole Oceanographic Institution
Petrographic analysis of eleven samples from the upper Tertiary-age Navarin basin, Nancy Well #1 (API: 55460000030000), 1986
The impact of major maritime accidents on the development of international regulations concerning safety of navigation and protection of the environment
The article presents the impact of major maritime accidents on the development of international regulations concerning the safety of navigation and environmental protection of the seas and oceans. It contains analysis of the reasons and consequences of maritime disasters like the accidents of: ‘Titanic’, ‘Torrey Canyon’, ‘Amoco Cadiz’, ‘Herald of Free Enterprise’, ‘Exxon Valdez’, ‘Estonia’, ‘Erika’ and ‘Prestige’ as well as international agreements established in order to prevent this type of accident in the future or, at least, limit their consequences.Artykuł prezentuje wpływ największych wypadków morskich na rozwój międzynarodowych przepisów dotyczących bezpieczeństwa żeglugi i ochrony środowiska naturalnego mórz i oceanów. Zawiera analizę przyczyn i konsekwencji katastrof morskich statków „Titanic”, „Torrey Canyon”, „Amoco Cadiz”, „Herald of Free Enterprise”, „Exxon Valdez”, „Estonia”, „Erika” i „Prestige” oraz porozumień międzynarodowych ustanowionych w celu zapobiegnięcia tego typu wypadkom w przyszłości lub przynajmniej ograniczenia ich negatywnych skutków
Petrographic analysis of 50 sandstone samples from the North Slope of the Brooks Range, Alaska, 1974
- …
