833 research outputs found

    Supergravity at the boundary of AdS supergravity

    Full text link
    We give a general analysis of AdS boundary conditions for spin-3/2 Rarita-Schwinger fields and investigate boundary conditions preserving supersymmetry for a graviton multiplet in AdS_4. Linear Rarita-Schwinger fields in AdS_d are shown to admit mixed Dirichlet-Neumann boundary conditions when their mass is in the range 0m<1/2lAdS0 \leq |m| < 1/2l_{AdS}. We also demonstrate that mixed boundary conditions are allowed for larger masses when the inner product is "renormalized" accordingly with the action. We then use the results obtained for |m| = 1/l_{AdS} to explore supersymmetric boundary conditions for N = 1 AdS_4 supergravity in which the metric and Rarita-Schwinger fields are fluctuating at the boundary. We classify boundary conditions that preserve boundary supersymmetry or superconformal symmetry. Under the AdS/CFT dictionary, Neumann boundary conditions in d=4 supergravity correspond to gauging the superconformal group of the 3-dimensional CFT describing M2-branes, while N = 1 supersymmetric mixed boundary conditions couple the CFT to N = 1 superconformal topologically massive gravity.Comment: 23 pages, RevTe

    A note on Kerr/CFT and free fields

    Full text link
    The near-horizon geometry of the extremal four-dimensional Kerr black hole and certain generalizations thereof has an SL(2,R) x U(1) isometry group. Excitations around this geometry can be controlled by imposing appropriate boundary conditions. For certain boundary conditions, the U(1) isometry is enhanced to a Virasoro algebra. Here, we propose a free-field construction of this Virasoro algebra.Comment: 10 pages, v2: comments and references adde

    A tale of two superpotentials: Stability and Instability in Designer Gravity

    Get PDF
    We investigate the stability of asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound. The boundary conditions in these ``designer gravity'' theories are defined in terms of an arbitrary function W. Previous work had suggested that the energy in designer gravity is bounded below if i) W has a global minimum and ii) the scalar potential admits a superpotential P. More recently, however, certain solutions were found (numerically) to violate the proposed energy bound. We resolve the discrepancy by observing that a given scalar potential can admit two possible branches of the corresponding superpotential, P_{\pm}. When there is a P_- branch, we rigorously prove a lower bound on the energy; the P_+ branch alone is not sufficient. Our numerical investigations i) confirm this picture, ii) confirm other critical aspects of the (complicated) proofs, and iii) suggest that the existence of P_- may in fact be necessary (as well as sufficient) for the energy of a designer gravity theory to be bounded below

    Near Extremal Kerr Entropy from AdS_2 Quantum Gravity

    Full text link
    We analyze the asymptotic symmetries of near extremal Kerr black holes in four dimensions using the AdS_2/CFT_1 correspondence. We find a Virasoro algebra with central charge c_R=12J that is independent from the Virasoro algebra (with the same central charge) that acts on the degenerate ground state. The energy of the excitations is computed as well, and we can use Cardy's formula to determine the near extremal entropy. Our result is consistent with the Bekenstein-Hawking area law for near extremal Kerr black holes.Comment: 28 pages. v2: references added, typos correcte

    On the CFT duals for near-extremal black holes

    Full text link
    We consider Kerr-Newman-AdS-dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U(1)_L x U(1)_R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well defined and non-vanishing and to yield central charges c_L\neq0 and c_R=0. The Cardy formula subsequently reproduces the Bekenstein-Hawking entropy of the black hole. This suggests that the near-extremal Kerr-Newman-AdS-dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 page

    Multitrace deformations, Gamow states, and Stability of AdS/CFT

    Full text link
    We analyze the effect of multitrace deformations in conformal field theories at leading order in a large N approximation. These theories admit a description in terms of a weakly coupled gravity dual. We show how the deformations can be mapped into boundary terms of the gravity theory and how to reproduce the RG equations found in field theory. In the case of doubletrace deformations, and for bulk scalars with masses in the range d2/4<m2<d2/4+1-d^2/4<m^2<-d^2/4+1, the deformed theory flows between two fixed points of the renormalization group, manifesting a resonant behavior at the scale characterizing the transition between the two CFT's. On the gravity side the resonance is mapped into an IR non-normalizable mode (Gamow state) whose overlap with the UV region increases as the dual operator approaches the free field limit. We argue that this resonant behavior is a generic property of large N theories in the conformal window, and associate it to a remnant of the Nambu-Goldstone mode of dilatation invariance. We emphasize the role of nonminimal couplings to gravity and establish a stability theorem for scalar/gravity systems with AdS boundary conditions in the presence of arbitrary boundary potentials and nonminimal coupling.Comment: 14 pages, references added, introduction change

    A near-NHEK/CFT correspondence

    Full text link
    We consider excitations around the recently introduced near-NHEK metric describing the near-horizon geometry of the near-extremal four-dimensional Kerr black hole. This geometry has a U(1)_L x U(1)_R isometry group which can be enhanced to a pair of commuting Virasoro algebras. We present boundary conditions for which the conserved charges of the corresponding asymptotic symmetries are well defined and non-vanishing and find the central charges c_L=12J/hbar and c_R=0 where J is the angular momentum of the black hole. Applying the Cardy formula reproduces the Bekenstein-Hawking entropy of the black hole. This suggests that the near-extremal Kerr black hole is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 pages, v2: references updated, adde

    Stability in Designer Gravity

    Full text link
    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al.and find they differ from the spinor charges except when W=0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which WW has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this, by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed.Comment: 29 page

    Particle dynamics near extreme Kerr throat and supersymmetry

    Full text link
    The extreme Kerr throat solution is believed to be non-supersymmetric. However, its isometry group SO(2,1) x U(1) matches precisely the bosonic subgroup of N=2 superconformal group in one dimension. In this paper we construct N=2 supersymmetric extension of a massive particle moving near the horizon of the extreme Kerr black hole. Bosonic conserved charges are related to Killing vectors in a conventional way. Geometric interpretation of supersymmetry charges remains a challenge.Comment: V2: 10 pages; discussion in sect. 4 and 5 extended, acknowledgements and references adde

    Searching for Signatures of Cosmic Superstrings in the CMB

    Full text link
    Because cosmic superstrings generically form junctions and gauge theoretic strings typically do not, junctions may provide a signature to distinguish between cosmic superstrings and gauge theoretic cosmic strings. In cosmic microwave background anisotropy maps, cosmic strings lead to distinctive line discontinuities. String junctions lead to junctions in these line discontinuities. In turn, edge detection algorithms such as the Canny algorithm can be used to search for signatures of strings in anisotropy maps. We apply the Canny algorithm to simulated maps which contain the effects of cosmic strings with and without string junctions. The Canny algorithm produces edge maps. To distinguish between edge maps from string simulations with and without junctions, we examine the density distribution of edges and pixels crossed by edges. We find that in string simulations without Gaussian noise (such as produced by the dominant inflationary fluctuations) our analysis of the output data from the Canny algorithm can clearly distinguish between simulations with and without string junctions. In the presence of Gaussian noise at the level expected from the current bounds on the contribution of cosmic strings to the total power spectrum of density fluctuations, the distinction between models with and without junctions is more difficult. However, by carefully analyzing the data the models can still be differentiated.Comment: 15 page
    corecore