833 research outputs found
Supergravity at the boundary of AdS supergravity
We give a general analysis of AdS boundary conditions for spin-3/2
Rarita-Schwinger fields and investigate boundary conditions preserving
supersymmetry for a graviton multiplet in AdS_4. Linear Rarita-Schwinger fields
in AdS_d are shown to admit mixed Dirichlet-Neumann boundary conditions when
their mass is in the range . We also demonstrate that
mixed boundary conditions are allowed for larger masses when the inner product
is "renormalized" accordingly with the action. We then use the results obtained
for |m| = 1/l_{AdS} to explore supersymmetric boundary conditions for N = 1
AdS_4 supergravity in which the metric and Rarita-Schwinger fields are
fluctuating at the boundary. We classify boundary conditions that preserve
boundary supersymmetry or superconformal symmetry. Under the AdS/CFT
dictionary, Neumann boundary conditions in d=4 supergravity correspond to
gauging the superconformal group of the 3-dimensional CFT describing M2-branes,
while N = 1 supersymmetric mixed boundary conditions couple the CFT to N = 1
superconformal topologically massive gravity.Comment: 23 pages, RevTe
A note on Kerr/CFT and free fields
The near-horizon geometry of the extremal four-dimensional Kerr black hole
and certain generalizations thereof has an SL(2,R) x U(1) isometry group.
Excitations around this geometry can be controlled by imposing appropriate
boundary conditions. For certain boundary conditions, the U(1) isometry is
enhanced to a Virasoro algebra. Here, we propose a free-field construction of
this Virasoro algebra.Comment: 10 pages, v2: comments and references adde
A tale of two superpotentials: Stability and Instability in Designer Gravity
We investigate the stability of asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound. The boundary conditions in these ``designer gravity'' theories are defined in terms of an arbitrary function W. Previous work had suggested that the energy in designer gravity is bounded below if i) W has a global minimum and ii) the scalar potential admits a superpotential P. More recently, however, certain solutions were found (numerically) to violate the proposed energy bound. We resolve the discrepancy by observing that a given scalar potential can admit two possible branches of the corresponding superpotential, P_{\pm}. When there is a P_- branch, we rigorously prove a lower bound on the energy; the P_+ branch alone is not sufficient. Our numerical investigations i) confirm this picture, ii) confirm other critical aspects of the (complicated) proofs, and iii) suggest that the existence of P_- may in fact be necessary (as well as sufficient) for the energy of a designer gravity theory to be bounded below
Near Extremal Kerr Entropy from AdS_2 Quantum Gravity
We analyze the asymptotic symmetries of near extremal Kerr black holes in
four dimensions using the AdS_2/CFT_1 correspondence. We find a Virasoro
algebra with central charge c_R=12J that is independent from the Virasoro
algebra (with the same central charge) that acts on the degenerate ground
state. The energy of the excitations is computed as well, and we can use
Cardy's formula to determine the near extremal entropy. Our result is
consistent with the Bekenstein-Hawking area law for near extremal Kerr black
holes.Comment: 28 pages. v2: references added, typos correcte
On the CFT duals for near-extremal black holes
We consider Kerr-Newman-AdS-dS black holes near extremality and work out the
near-horizon geometry of these near-extremal black holes. We identify the exact
U(1)_L x U(1)_R isometries of the near-horizon geometry and provide boundary
conditions enhancing them to a pair of commuting Virasoro algebras. The
conserved charges of the corresponding asymptotic symmetries are found to be
well defined and non-vanishing and to yield central charges c_L\neq0 and c_R=0.
The Cardy formula subsequently reproduces the Bekenstein-Hawking entropy of the
black hole. This suggests that the near-extremal Kerr-Newman-AdS-dS black hole
is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 page
Multitrace deformations, Gamow states, and Stability of AdS/CFT
We analyze the effect of multitrace deformations in conformal field theories
at leading order in a large N approximation. These theories admit a description
in terms of a weakly coupled gravity dual. We show how the deformations can be
mapped into boundary terms of the gravity theory and how to reproduce the RG
equations found in field theory. In the case of doubletrace deformations, and
for bulk scalars with masses in the range , the deformed
theory flows between two fixed points of the renormalization group, manifesting
a resonant behavior at the scale characterizing the transition between the two
CFT's. On the gravity side the resonance is mapped into an IR non-normalizable
mode (Gamow state) whose overlap with the UV region increases as the dual
operator approaches the free field limit. We argue that this resonant behavior
is a generic property of large N theories in the conformal window, and
associate it to a remnant of the Nambu-Goldstone mode of dilatation invariance.
We emphasize the role of nonminimal couplings to gravity and establish a
stability theorem for scalar/gravity systems with AdS boundary conditions in
the presence of arbitrary boundary potentials and nonminimal coupling.Comment: 14 pages, references added, introduction change
A near-NHEK/CFT correspondence
We consider excitations around the recently introduced near-NHEK metric
describing the near-horizon geometry of the near-extremal four-dimensional Kerr
black hole. This geometry has a U(1)_L x U(1)_R isometry group which can be
enhanced to a pair of commuting Virasoro algebras. We present boundary
conditions for which the conserved charges of the corresponding asymptotic
symmetries are well defined and non-vanishing and find the central charges
c_L=12J/hbar and c_R=0 where J is the angular momentum of the black hole.
Applying the Cardy formula reproduces the Bekenstein-Hawking entropy of the
black hole. This suggests that the near-extremal Kerr black hole is
holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 pages, v2: references updated, adde
Stability in Designer Gravity
We study the stability of designer gravity theories, in which one considers
gravity coupled to a tachyonic scalar with anti-de Sitter boundary conditions
defined by a smooth function W. We construct Hamiltonian generators of the
asymptotic symmetries using the covariant phase space method of Wald et al.and
find they differ from the spinor charges except when W=0. The positivity of the
spinor charge is used to establish a lower bound on the conserved energy of any
solution that satisfies boundary conditions for which has a global minimum.
A large class of designer gravity theories therefore have a stable ground
state, which the AdS/CFT correspondence indicates should be the lowest energy
soliton. We make progress towards proving this, by showing that minimum energy
solutions are static. The generalization of our results to designer gravity
theories in higher dimensions involving several tachyonic scalars is discussed.Comment: 29 page
Particle dynamics near extreme Kerr throat and supersymmetry
The extreme Kerr throat solution is believed to be non-supersymmetric.
However, its isometry group SO(2,1) x U(1) matches precisely the bosonic
subgroup of N=2 superconformal group in one dimension. In this paper we
construct N=2 supersymmetric extension of a massive particle moving near the
horizon of the extreme Kerr black hole. Bosonic conserved charges are related
to Killing vectors in a conventional way. Geometric interpretation of
supersymmetry charges remains a challenge.Comment: V2: 10 pages; discussion in sect. 4 and 5 extended, acknowledgements
and references adde
Searching for Signatures of Cosmic Superstrings in the CMB
Because cosmic superstrings generically form junctions and gauge theoretic
strings typically do not, junctions may provide a signature to distinguish
between cosmic superstrings and gauge theoretic cosmic strings. In cosmic
microwave background anisotropy maps, cosmic strings lead to distinctive line
discontinuities. String junctions lead to junctions in these line
discontinuities. In turn, edge detection algorithms such as the Canny algorithm
can be used to search for signatures of strings in anisotropy maps. We apply
the Canny algorithm to simulated maps which contain the effects of cosmic
strings with and without string junctions. The Canny algorithm produces edge
maps. To distinguish between edge maps from string simulations with and without
junctions, we examine the density distribution of edges and pixels crossed by
edges. We find that in string simulations without Gaussian noise (such as
produced by the dominant inflationary fluctuations) our analysis of the output
data from the Canny algorithm can clearly distinguish between simulations with
and without string junctions. In the presence of Gaussian noise at the level
expected from the current bounds on the contribution of cosmic strings to the
total power spectrum of density fluctuations, the distinction between models
with and without junctions is more difficult. However, by carefully analyzing
the data the models can still be differentiated.Comment: 15 page
- …
