537 research outputs found
Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas
We present time-resolved spectroscopic measurements of Rydberg-Rydberg
interactions in an ultracold gas, revealing the pair dynamics induced by
long-range van der Waals interactions between the atoms. By detuning the
excitation laser, a specific pair distribution is prepared. Penning ionization
on a microsecond timescale serves as a probe for the pair dynamics under the
influence of the attractive long-range forces. Comparison with a Monte Carlo
model not only explains all spectroscopic features but also gives quantitative
information about the interaction potentials. The results imply that the
interaction-induced ionization rate can be influenced by the excitation laser.
Surprisingly, interaction-induced ionization is also observed for Rydberg
states with purely repulsive interactions
Modeling many-particle mechanical effects of an interacting Rydberg gas
In a recent work [Phys. Rev. Lett. 98, 023004 (2007)] we have investigated
the influence of attractive van der Waals interaction on the pair distribution
and Penning ionization dynamics of ultracold Rydberg gases. Here we extend this
description to atoms initially prepared in Rydberg states exhibiting repulsive
interaction. We present calculations based on a Monte Carlo algorithm to
simulate the dynamics of many atoms under the influence of both repulsive and
attractive longrange interatomic forces. Redistribution to nearby states
induced by black body radiation is taken into account, changing the effective
interaction potentials. The model agrees with experimental observations, where
the ionization rate is found to increase when the excitation laser is
blue-detuned from the atomic resonance
Suppression of Excitation and Spectral Broadening Induced by Interactions in a Cold Gas of Rydberg Atoms
We report on the observation of ultralong range interactions in a gas of cold
Rubidium Rydberg atoms. The van-der-Waals interaction between a pair of Rydberg
atoms separated as far as 100,000 Bohr radii features two important effects:
Spectral broadening of the resonance lines and suppression of excitation with
increasing density. The density dependence of these effects is investigated in
detail for the S- and P- Rydberg states with main quantum numbers n ~ 60 and n
~ 80 excited by narrow-band continuous-wave laser light. The density-dependent
suppression of excitation can be interpreted as the onset of an
interaction-induced local blockade
Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17<Z <25
The results of measurements of the production of neutron-rich nuclei by the
fragmentation of a 76-Ge beam are presented. The cross sections were measured
for a large range of nuclei including fifteen new isotopes that are the most
neutron-rich nuclides of the elements chlorine to manganese (50-Cl, 53-Ar,
55,56-K, 57,58-Ca, 59,60,61-Sc, 62,63-Ti, 65,66-V, 68-Cr, 70-Mn). The enhanced
cross sections of several new nuclei relative to a simple thermal evaporation
framework, previously shown to describe similar production cross sections,
indicates that nuclei in the region around 62-Ti might be more stable than
predicted by current mass models and could be an indication of a new island of
inversion similar to that centered on 31-Na.Comment: 4 pages, 3 figures, to be published in Physical Review Letters, 200
Adiabatic Formation of Rydberg Crystals with Chirped Laser Pulses
Ultracold atomic gases have been used extensively in recent years to realize
textbook examples of condensed matter phenomena. Recently, phase transitions to
ordered structures have been predicted for gases of highly excited, 'frozen'
Rydberg atoms. Such Rydberg crystals are a model for dilute metallic solids
with tunable lattice parameters, and provide access to a wide variety of
fundamental phenomena. We investigate theoretically how such structures can be
created in four distinct cold atomic systems, by using tailored
laser-excitation in the presence of strong Rydberg-Rydberg interactions. We
study in detail the experimental requirements and limitations for these
systems, and characterize the basic properties of small crystalline Rydberg
structures in one, two and three dimensions.Comment: 23 pages, 10 figures, MPIPKS-ITAMP Tandem Workshop, Cold Rydberg
Gases and Ultracold Plasmas (CRYP10), Sept. 6-17, 201
Coherent Population Trapping with Controlled Interparticle Interactions
We investigate Coherent Population Trapping in a strongly interacting
ultracold Rydberg gas. Despite the strong van der Waals interactions and
interparticle correlations, we observe the persistence of a resonance with
subnatural linewidth at the single-particle resonance frequency as we tune the
interaction strength. This narrow resonance cannot be understood within a
meanfield description of the strong Rydberg--Rydberg interactions. Instead, a
many-body density matrix approach, accounting for the dynamics of interparticle
correlations, is shown to reproduce the observed spectral features
Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters
Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models\u27 initial standing wood and soil carbon pools, including historical climate patterns and the time since the last major disturbance, can be as important as potential climatic changes to prediction of the annual ecosystem carbon balance in this boreal spruce forest
Recommended from our members
Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements
Nine ecosystem process models were used to predict CO2 and water vapor exchanges by a 150-year-old black spruce forest in central Canada during 1994–1996 to evaluate and improve the models. Three models had hourly time steps, five had daily time steps, and one had monthly time steps. Model input included site ecosystem characteristics and meteorology. Model predictions were compared to eddy covariance (EC) measurements of whole-ecosystem CO2exchange and evapotranspiration, to chamber measurements of nighttime moss-surface CO2release, and to ground-based estimates of annual gross primary production, net primary production, net ecosystem production (NEP), plant respiration, and decomposition. Model-model differences were apparent for all variables. Model-measurement agreement was good in some cases but poor in others. Modeled annual NEP ranged from −11 g C m−2 (weak CO2source) to 85 g C m−2 (moderate CO2 sink). The models generally predicted greater annual CO2sink activity than measured by EC, a discrepancy consistent with the fact that model parameterizations represented the more productive fraction of the EC tower “footprint.” At hourly to monthly timescales, predictions bracketed EC measurements so median predictions were similar to measurements, but there were quantitatively important model-measurement discrepancies found for all models at subannual timescales. For these models and input data, hourly time steps (and greater complexity) compared to daily time steps tended to improve model-measurement agreement for daily scale CO2 exchange and evapotranspiration (as judged by root-mean-squared error). Model time step and complexity played only small roles in monthly to annual predictions
Optical probing of the Coulomb interactions of an electrically pumped polariton condensate
The authors would like to thank the State of Bavaria for financial support. SM and TL were supported by the NAP Start-Up grant M4081630 and MOE AcRF Tier 1 grant 2016-T1-001-084.We report on optical probing of the Coulomb interactions in an electrically driven exciton-polariton laser. By positioning a weak non-resonant Gaussian continuous wave-beam with a diameter of 2 μm inside an electrical condensate excited in a 20 μm diameter micropillar, we study a repulsion effect which is characteristic of the part-excitonic nature of the microcavity system in strong coupling. It manifests itself in a modified real space distribution of the emission pattern. Furthermore, polariton repulsion results in a continuous blueshift of the emission with increased power of the probe beam. A Gross-Pitaevskii equation approach based on modeling the electrical and optical potentials explains our experimental data.PostprintPeer reviewe
- …
