2,501 research outputs found
Knowledge Summary 27: Death reviews: maternal, perinatal and child
Many maternal, perinatal and child deaths are preventable and progress towards Millennium Development Goals 4&5, to reduce child mortality and improve maternal health, has been insufficient in many parts of the world. Well-implemented death reviews provide opportunities to examine the circumstances surrounding a woman’s or child’s death, and improve the delivery of health services to prevent such deaths in the future. Several types of review processes exist to evaluate deaths in diverse settings, given different data availability and levels of service delivery. Both consistent surveillance and effective response are needed to ensure that maternal, perinatal and child deaths are identified and reviewed, so that recommendations can be made, and action can be taken to prevent further deaths
The 2011 Outburst of Recurrent Nova T Pyx: X-ray Observations Expose the White Dwarf Mass and Ejection Dynamics
The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and
became the subject of an intensive multi-wavelength observational campaign. We
analyze data from the Swift and Suzaku satellites to produce a detailed X-ray
light curve augmented by epochs of spectral information. X-ray observations
yield mostly non-detections in the first four months of outburst, but both a
super-soft and hard X-ray component rise rapidly after Day 115. The super-soft
X-ray component, attributable to the photosphere of the nuclear-burning white
dwarf, is relatively cool (~45 eV) and implies that the white dwarf in T Pyx is
significantly below the Chandrasekhar mass (~1 M_sun). The late turn-on time of
the super-soft component yields a large nova ejecta mass (>~10^-5 M_sun),
consistent with estimates at other wavelengths. The hard X-ray component is
well fit by a ~1 keV thermal plasma, and is attributed to shocks internal to
the 2011 nova ejecta. The presence of a strong oxygen line in this thermal
plasma on Day 194 requires a significantly super-solar abundance of oxygen and
implies that the ejecta are polluted by white dwarf material. The X-ray light
curve can be explained by a dual-phase ejection, with a significant delay
between the first and second ejection phases, and the second ejection finally
released two months after outburst. A delayed ejection is consistent with
optical and radio observations of T Pyx, but the physical mechanism producing
such a delay remains a mystery.Comment: Re-submitted to ApJ after revision
The Radio Light Curve of the Gamma-Ray Nova in V407 Cyg: Thermal Emission from the Ionized Symbiotic Envelope, Devoured from Within by the Nova Blast
We present multi-frequency radio observations of the 2010 nova event in the
symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array
and spanning 1-45 GHz and 17-770 days following discovery. This nova---the
first ever detected in gamma rays---shows a radio light curve dominated by the
wind of the Mira giant companion, rather than the nova ejecta themselves. The
radio luminosity grew as the wind became increasingly ionized by the nova
outburst, and faded as the wind was violently heated from within by the nova
shock. This study marks the first time that this physical mechanism has been
shown to dominate the radio light curve of an astrophysical transient. We do
not observe a thermal signature from the nova ejecta or synchrotron emission
from the shock, due to the fact that these components were hidden behind the
absorbing screen of the Mira wind.
We estimate a mass loss rate for the Mira wind of Mdot_w ~ 10^-6 M_sun/yr. We
also present the only radio detection of V407 Cyg before the 2010 nova, gleaned
from unpublished 1993 archival VLA data, which shows that the radio luminosity
of the Mira wind varies by a factor of >~20 even in quiescence. Although V407
Cyg likely hosts a massive accreting white dwarf, making it a candidate
progenitor system for a Type Ia supernova, the dense and radially continuous
circumbinary material surrounding V407 Cyg is inconsistent with observational
constraints on the environments of most Type Ia supernovae.Comment: Resubmitted to ApJ after incorporating referee's comment
Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation
A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits
Radio studies of novae: a current status report and highlights of new results
Novae, which are the sudden visual brightening triggered by runaway
thermonuclear burning on the surface of an accreting white dwarf, are fairly
common and bright events. Despite their astronomical significance as nearby
laboratories for the study of nuclear burning and accretion phenomena, many
aspects of these common stellar explosions are observationally not
well-constrained and remain poorly understood. Radio observations, modeling and
interpretation can potentially play a crucial role in addressing some of these
puzzling issues. In this review on radio studies of novae, we focus on the
possibility of testing and improving the nova models with radio observations,
and present a current status report on the progress in both the observational
front and theoretical developments. We specifically address the issues of
accurate estimation of ejecta mass, multi-phase and complex ejection phenomena,
and the effect of a dense environment around novae. With highlights of new
observational results, we illustrate how radio observations can shed light on
some of these long-standing puzzles.Comment: 19 pages, 4 figures. Review article published in the Bulletin of the
Astronomical Society of India (BASI) special issue on nova
Promotility Action of the Probiotic Bifidobacterium lactis HN019 Extract Compared with Prucalopride in Isolated Rat Large Intestine
Copyright © 2017 Dalziel, Anderson, Peters, Lynch, Spencer, Dekker and Roy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Attention is increasingly being focussed on probiotics as potential agents to restore or improve gastrointestinal (GI) transit. Determining mechanism of action would support robust health claims. The probiotic bacterium Bifidobacterium lactis HN019 reduces transit time, but its mechanisms of action and effects on motility patterns are poorly understood. The aim of this study was to investigate changes in GI motility induced by an extract of HN019 on distinct patterns of colonic motility in isolated rat large intestine, compared with a known promotility modulator, prucalopride. The large intestines from male Sprague Dawley rats (3–6 months) were perfused with Kreb's buffer at 37°C in an oxygenated tissue bath. Isometric force transducers recorded changes in circular muscle activity at four independent locations assessing contractile propagation between the proximal colon and the rectum. HN019 extract was perfused through the tissue bath and differences in tension and frequency quantified relative to pre-treatment controls. Prucalopride (1 μM) increased the frequency of propagating contractions (by 75 ± 26%) in the majority of preparations studied (10/12), concurrently decreasing the frequency of non-propagating contractions (by 50 ± 11%). HN019 extract had no effect on contractile activity during exposure (n = 8). However, following wash out, contraction amplitude of propagating contractions increased (by 55 ± 18%) in the distal colon, while the frequency of non-propagating proximal contractions decreased by 57 ± 7%. The prokinetic action of prucalopride increased the frequency of synchronous contractions along the length of colon, likely explaining increased colonic rate of transit in vivo. HN019 extract modified motility patterns in a different manner by promoting propagating contractile amplitude and inhibiting non-propagations, also demonstrating prokinetic activity consistent with the reduction of constipation by B. lactis HN019 in humans
Binary orbits as the driver of γ-ray emission and mass ejection in classical novae
Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel �10,000 solar masses of material at velocities exceeding 1,000 km/s. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of the thermonuclear runaway, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in GeV gamma-rays, suggesting that relativistic particles are accelerated by strong shocks in nova ejecta. Here we present high-resolution imaging of the gamma-ray-emitting nova V959 Mon at radio wavelengths, showing that its ejecta were shaped by binary motion: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters
Bodyweight Perceptions among Texas Women: The Effects of Religion, Race/Ethnicity, and Citizenship Status
Despite previous work exploring linkages between religious participation and health, little research has looked at the role of religion in affecting bodyweight perceptions. Using the theoretical model developed by Levin et al. (Sociol Q 36(1):157–173, 1995) on the multidimensionality of religious participation, we develop several hypotheses and test them by using data from the 2004 Survey of Texas Adults. We estimate multinomial logistic regression models to determine the relative risk of women perceiving themselves as overweight. Results indicate that religious attendance lowers risk of women perceiving themselves as very overweight. Citizenship status was an important factor for Latinas, with noncitizens being less likely to see themselves as overweight. We also test interaction effects between religion and race. Religious attendance and prayer have a moderating effect among Latina non-citizens so that among these women, attendance and prayer intensify perceptions of feeling less overweight when compared to their white counterparts. Among African American women, the effect of increased church attendance leads to perceptions of being overweight. Prayer is also a correlate of overweight perceptions but only among African American women. We close with a discussion that highlights key implications from our findings, note study limitations, and several promising avenues for future research
- …
