59,920 research outputs found
Variable Hardy Spaces
We develop the theory of variable exponent Hardy spaces. Analogous to the
classical theory, we give equivalent definitions in terms of maximal operators.
We also show that distributions in these spaces have an atomic decomposition
including a "finite" decomposition; this decomposition is more like the
decomposition for weighted Hardy spaces due to Stromberg and Torchinsky than
the classical atomic decomposition. As an application of the atomic
decomposition we show that singular integral operators are bounded on variable
Hardy spaces with minimal regularity assumptions on the exponent function
Heterogeneity in structurally arrested hard spheres
When cooled or compressed sufficiently rapidly, a liquid vitrifies into a glassy amorphous state. Vitrification in a dense liquid is associated with jamming of the particles. For hard spheres, the density and degree of order in the final structure depend on the compression rate: simple intuition suggests, and previous computer simulation demonstrates, that slower compression results in states that are both denser and more ordered. In this work, we use the Lubachevsky-Stillinger algorithm to generate a sequence of structurally arrested hard-sphere states by varying the compression rate. We find that while the degree of order, as measured by both bond-orientation and translation order parameters, increases monotonically with decreasing compression rate, the density of the arrested state first increases, then decreases, then increases again, as the compression rate decreases, showing a minimum at an intermediate compression rate. Examination of the distribution of the local order parameters and the distribution of the root-mean-square fluctuation of the particle positions, as well as direct visual inspection of the arrested structures, reveal that they are structurally heterogeneous, consisting of disordered, amorphous regions and locally ordered crystal-like domains. In particular, the low-density arrested states correspond with many interconnected small crystal clusters that form a polycrystalline network interspersed in an amorphous background, suggesting that jamming by the domains may be an important mechanism for these states
- …
