10,083 research outputs found

    Attosecond dynamics of light-induced resonant hole transfer in high-order-harmonic generation

    Full text link
    We present a study of high-order-harmonic generation (HHG) assisted by extreme ultraviolet (XUV) attosecond pulses, which can lead to the excitation of inner-shell electrons and the generation of a second HHG plateau. With the treatment of a one-dimensional model of krypton, based on time-dependent configuration interaction singles (TDCIS) of an effective two-electron system, we show that the XUV-assisted HHG spectrum reveals the duration of the semiclassical electron trajectories. The results are interpreted by the strong-field approximation (SFA) and the importance of the hole transfer during the tunneling process is emphasized. Finally, coherent population transfer between the inner and outer holes with attosecond pulse trains is discussed.Comment: 13 pages, 8 figure

    Thermodynamics of SU(2) bosons in one dimension

    Full text link
    On the basis of Bethe ansatz solution of two-component bosons with SU(2) symmetry and δ\delta-function interaction in one dimension, we study the thermodynamics of the system at finite temperature by using the strategy of thermodynamic Bethe ansatz (TBA). It is shown that the ground state is an isospin "ferromagnetic" state by the method of TBA, and at high temperature the magnetic property is dominated by Curie's law. We obtain the exact result of specific heat and entropy in strong coupling limit which scales like TT at low temperature. While in weak coupling limit, it is found there is still no Bose-Einstein Condensation (BEC) in such 1D system.Comment: 7 page

    Free and Interacting Short-Range Entangled Phases of Fermions: Beyond the Ten-Fold Way

    Get PDF
    We extend the periodic table of phases of free fermions in the ten-fold way symmetry classes to a classification of free fermionic phases protected by an arbitrary on-site unitary symmetry G^\hat G in an arbitrary dimension. The classification is described as a function of the real representation theory of G^\hat G and the data of the original periodic table. We also systematically study in low dimensions the relationship between the free invariants and the invariants of short-range entangled interacting phases of fermions. Namely we determine whether a given symmetry protected phase of free fermions is destabilized by sufficiently strong interactions or it remains stable even in the presence of interactions. We also determine which interacting fermionic phases cannot be realized by free fermions. Examples of both destabilized free phases and intrinsically interacting phases are common in all dimensions.Comment: 18 page

    Attosecond photoionization dynamics with stimulated core-valence transitions

    Full text link
    We investigate ionization of neon atoms by an isolated attosecond pump pulse in the presence of two coherent extreme ultraviolet or x-ray probe fields. The probe fields are tuned to a core-valence transition in the residual ion and induce spectral shearing of the photoelectron distributions. We show that the photoelectron-ion coincidence signal contains an interference pattern that depends on the temporal structure of the attosecond pump pulse and the stimulated core-valence transition. Many-body perturbation theory is used to compute "atomic response times" for the processes and we find strikingly different behavior for stimulation to the outer-core hole (2p - 2s) and stimulation to the inner-core hole (2p - 1s). The response time of the inner-core transition is found to be comparable to that of state-of-the-art laser-based characterization techniques for attosecond pulses.Comment: 12 pages, 5 figure
    corecore