13,889 research outputs found
Universal critical properties of the Eulerian bond-cubic model
We investigate the Eulerian bond-cubic model on the square lattice by means
of Monte Carlo simulations, using an efficient cluster algorithm and a
finite-size scaling analysis. The critical points and four critical exponents
of the model are determined for several values of . Two of the exponents are
fractal dimensions, which are obtained numerically for the first time. Our
results are consistent with the Coulomb gas predictions for the critical O()
branch for and the results obtained by previous transfer matrix
calculations. For , we find that the thermal exponent, the magnetic
exponent and the fractal dimension of the largest critical Eulerian bond
component are different from those of the critical O(2) loop model. These
results confirm that the cubic anisotropy is marginal at but irrelevant
for
The reinforcing influence of recommendations on global diversification
Recommender systems are promising ways to filter the overabundant information
in modern society. Their algorithms help individuals to explore decent items,
but it is unclear how they allocate popularity among items. In this paper, we
simulate successive recommendations and measure their influence on the
dispersion of item popularity by Gini coefficient. Our result indicates that
local diffusion and collaborative filtering reinforce the popularity of hot
items, widening the popularity dispersion. On the other hand, the heat
conduction algorithm increases the popularity of the niche items and generates
smaller dispersion of item popularity. Simulations are compared to mean-field
predictions. Our results suggest that recommender systems have reinforcing
influence on global diversification.Comment: 6 pages, 6 figure
ICA-SVM combination algorithm for identification of motor imagery potentials
Mental tasks such as motor imagery in synchronization with a cue which result event related desynchronization (ERD) and event related synchronization (ERS) are usually studied in brain-computer interface (BCI) system. In this paper we analyze and classify the ERD/ERS response evoked by the motor imagery of left hand, right hand, foot and tongue. The signals were spatially filtered by Independent Component Analysis (ICA) before calculating the power spectral density (PSD) for related electrodes, and then the Support Vector Machine (SVM) was adopted to recognise the different imagery pattern according to ERD/ERS feature for the signals. The results showed that the combination of ICA-based signal extraction algorithm and SVM-based classification method was an effective tool for the identification of motor imagery potentials, with the highest accuracy rate of 91.4% and 77.6% for the lowest. © 2010 IEEE.published_or_final_versionThe 2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), Taranto, Apulia, Italy, 6-8 September 2010. In Proceedings of IEEE-CIMSA, 2010, p. 92-9
Production of squeezed state of single mode cavity field by the coupling of squeezed vacuum field reservoir in nonautonomous case
The dissipative and decoherence properties as well as the asymptotic behavior
of the single mode electromagnetic field interacting with the time-dependent
squeezed vacuum field reservoir are investigated in detail by using the
algebraic dynamical method. With the help of the left and right representations
of the relevant algebra, the dynamical symmetry of the nonautonomous
master equation of the system is found to be . The unique equilibrium
steady solution is found to be the squeezed state and any initial state of the
system is proved to approach the unique squeezed state asymptotically. Thus the
squeezed vacuum field reservoir is found to play the role of a squeezing mold
of the cavity field.Comment: 5 pages, no figure, Revtex
Particle-Antiparticle Mixing, epsilon_K, Delta Gamma_q, A_SL^q, A_CP(B_d -> psi K_S), A_CP(B_s -> psi phi) and B -> X_{s,d} gamma in the Littlest Higgs Model with T-Parity
We calculate a number of observables related to particle-antiparticle mixing
in the Littlest Higgs model with T-parity (LHT). The resulting effective
Hamiltonian for Delta F=2 transitions agrees with the one of Hubisz et al., but
our phenomenological analysis goes far beyond the one of these authors. In
particular, we point out that the presence of mirror fermions with new flavour
and CP-violating interactions allows to remove the possible Standard Model (SM)
discrepancy between the CP asymmetry S_{psi K_S} and large values of |V_ub| and
to obtain for the mass difference Delta M_s < (Delta M_s)_SM as suggested by
the recent result by the CDF collaboration. We also identify a scenario in
which simultaneously significant enhancements of the CP asymmetries S_{phi psi}
and A_SL^q relative to the SM are possible, while satisfying all existing
constraints, in particular from the B -> X_s gamma decay and A_CP(B -> X_s
gamma) that are presented in the LHT model here for the first time. In another
scenario the second, non-SM, value for the angle gamma=-(109+-6) from tree
level decays, although unlikely, can be made consistent with all existing data
with the help of mirror fermions. We present a number of correlations between
the observables in question and study the implications of our results for the
mass spectrum and the weak mixing matrix of mirror fermions. In the most
interesting scenarios, the latter one turns out to have a hierarchical
structure that differs significantly from the CKM one.Comment: 51 pages, 20 figures, 1 table. Extended discussion of the phases in
the new mixing matrix V_Hd, some references added or updated, conclusions
unchanged. Final version published in JHE
Toward physical realizations of thermodynamic resource theories
Conventional statistical mechanics describes large systems and averages over
many particles or over many trials. But work, heat, and entropy impact the
small scales that experimentalists can increasingly control, e.g., in
single-molecule experiments. The statistical mechanics of small scales has been
quantified with two toolkits developed in quantum information theory: resource
theories and one-shot information theory. The field has boomed recently, but
the theorems amassed have hardly impacted experiments. Can thermodynamic
resource theories be realized experimentally? Via what steps can we shift the
theory toward physical realizations? Should we care? I present eleven
opportunities in physically realizing thermodynamic resource theories.Comment: Publication information added. Cosmetic change
Retention of Two-Band Superconductivity in Highly Carbon-Doped MgB2
Tunneling data on MgB_{1.8}C_{0.2} show a reduction in the energy gap of the
pi-bands by a factor of two from undoped MgB2 that is consistent with the Tc
reduction, but inconsistent with the expectations of the dirty limit.
Dirty-limit theory for undoped MgB2 predicts a single gap about three times
larger than measured and a reduced Tc comparable to that measured. Our
heavily-doped samples exhibit a uniform dispersion of C suggestive of
significantly enhanced scattering, and we conclude that the retention of
two-band superconductivity in these samples is caused by a selective
suppression of interband scattering.Comment: 4 pages, 4 figures; added one figure, added one reference, minor
changes to the text, manuscript accepted for publication as a Phys. Rev. B
Rapid Communicatio
Three-loop HTL QCD thermodynamics
The hard-thermal-loop perturbation theory (HTLpt) framework is used to
calculate the thermodynamic functions of a quark-gluon plasma to three-loop
order. This is the highest order accessible by finite temperature perturbation
theory applied to a non-Abelian gauge theory before the high-temperature
infrared catastrophe. All ultraviolet divergences are eliminated by
renormalization of the vacuum, the HTL mass parameters, and the strong coupling
constant. After choosing a prescription for the mass parameters, the three-loop
results for the pressure and trace anomaly are found to be in very good
agreement with recent lattice data down to , which are
temperatures accessible by current and forthcoming heavy-ion collision
experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE
Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jin-Ping Laboratory
We report results on the searches of weakly interacting massive particles
(WIMPs) with sub-GeV masses () via WIMP-nucleus spin-independent
scattering with Migdal effect incorporated. Analysis on time-integrated (TI)
and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1
kgday exposure and 160 eVee threshold for TI analysis, and 1107.5
kgday exposure and 250 eVee threshold for AM analysis. The sensitive
windows in are expanded by an order of magnitude to lower DM masses
with Migdal effect incorporated. New limits on at
90\% confidence level are derived as 1010
for TI analysis at 50180 MeV/, and
1010 for AM analysis at
75 MeV/3.0 GeV/.Comment: 5 pages, 4 figure
- …
