562 research outputs found
Genomewide association study of leprosy.
BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
Genetic variation and relationships of eighteen Chinese indigenous pig breeds
Chinese indigenous pig breeds are recognized as an invaluable component of the world's pig genetic resources and are divided traditionally into six types. Twenty-six microsatellite markers recommended by the FAO (Food and Agriculture Organization) and ISAG (International Society of Animal Genetics) were employed to analyze the genetic diversity of 18 Chinese indigenous pig breeds with 1001 individuals representing five types, and three commercial breeds with 184 individuals. The observed heterozygosity, unbiased expected heterozygosity and the observed and effective number of alleles were used to estimate the genetic variation of each indigenous breed. The unbiased expected heterozygosity ranged between 0.700 (Mashen) and 0.876 (Guanling), which implies that there is an abundant genetic variation stored in Chinese indigenous pig breeds. Breed differentiation was shown by fixation indices (FIT, FIS, and FST). The FST per locus varied from 0.019 (S0090) to 0.170 (SW951), and the average FST of all loci was 0.077, which means that most of the genetic variation was kept within breeds and only a little of the genetic variation exists between populations. The Neighbor-Joining tree was constructed based on the Nei DA (1978) distances and one large cluster with all local breeds but the Mashen breed, was obtained. Four smaller sub-clusters were also found, which included two to four breeds each. These results, however, did not completely agree with the traditional type of classification. A Neighbor-Joining dendrogram of individuals was established from the distance of – ln(proportions of shared alleles); 92.14% of the individuals were clustered with their own breeds, which implies that this method is useful for breed demarcation. This extensive research on pig genetic diversity in China indicates that these 18 Chinese indigenous breeds may have one common ancestor, helps us to better understand the relative distinctiveness of pig genetic resources, and will assist in developing a national plan for the conservation and utilization of Chinese indigenous pig breeds
Inhibition of WEE1 Suppresses the Tumor Growth in Laryngeal Squamous Cell Carcinoma
WEE1 is a tyrosine kinase that regulates G2/M cell cycle checkpoint and frequently overexpressed in various tumors. However, the expression and clinical significance of WEE1 in human laryngeal squamous cell carcinoma (LSCC) are still unknown. In this study, we found that WEE1 was highly expressed in LSCC tissues compared with adjacent normal tissues. Importantly, overexpression of WEE1 was correlated with T stages, lymph node metastasis, clinical stages and poor prognosis of LSCC patients. Furthermore, inhibition of WEE1 by MK-1775 induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular reactive oxygen species (ROS) levels in LSCC cells. Pretreatment with ROS scavenger N-acetyl-L-cysteine could reverse MK-1775-induced ROS accumulation and cell apoptosis in LSCC cells. MK-1775 also inhibited the growth of LSCC xenografts in nude mice. Altogether, these findings suggest that WEE1 is a potential therapeutic target in LSCC, and inhibition of WEE1 is the prospective strategy for LSCC therapy
Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity
Exploring Hilbert-Space Fragmentation on a Superconducting Processor
Isolated interacting quantum systems generally thermalize, yet there are
several counterexamples for the breakdown of ergodicity, such as many-body
localization and quantum scars. Recently, ergodicity breaking has been observed
in systems subjected to linear potentials, termed Stark many-body localization.
This phenomenon is closely associated with Hilbert-space fragmentation,
characterized by a strong dependence of dynamics on initial conditions. Here,
we experimentally explore initial-state dependent dynamics using a ladder-type
superconducting processor with up to 24 qubits, which enables precise control
of the qubit frequency and initial state preparation. In systems with linear
potentials, we observe distinct non-equilibrium dynamics for initial states
with the same quantum numbers and energy, but with varying domain wall numbers.
This distinction becomes increasingly pronounced as the system size grows, in
contrast with disordered interacting systems. Our results provide convincing
experimental evidence of the fragmentation in Stark systems, enriching our
understanding of the weak breakdown of ergodicity.Comment: main text: 7 pages, 4 figures; supplementary: 13 pages, 14 figure
Exploring Hilbert-Space fragmentation on a superconducting processor
Isolated interacting quantum systems generally thermalize, yet there are several examples for the breakdown of ergodicity, such as many-body localization and quantum scars. Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization. This phenomenon is closely associated with Hilbert-space fragmentation, characterized by a strong dependence of dynamics on initial conditions. Here, we explore initial-state-dependent dynamics using a ladder-type superconducting processor with up to 24 qubits, which enables precise control of the qubit frequency and initial-state preparation. In systems with linear potentials, we experimentally observe distinct nonequilibrium dynamics for initial states with the same quantum numbers and energy, but with varying domain-wall numbers. Accompanied by the numerical simulation for systems with larger sizes, we reveal that this distinction becomes increasingly pronounced as the system size grows, in contrast with weakly disordered interacting systems. Our results provide convincing experimental evidence of the fragmentation in Stark systems, enriching our understanding of the weak breakdown of ergodicity
MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells
<p>Abstract</p> <p>Background</p> <p>Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway.</p> <p>Methods</p> <p>In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested.</p> <p>Results</p> <p>MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA.</p> <p>Conclusion</p> <p>The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing.</p
SAR-RARP50: Segmentation of surgical instrumentation and Action Recognition on Robot-Assisted Radical Prostatectomy Challenge
Surgical tool segmentation and action recognition are fundamental building
blocks in many computer-assisted intervention applications, ranging from
surgical skills assessment to decision support systems. Nowadays,
learning-based action recognition and segmentation approaches outperform
classical methods, relying, however, on large, annotated datasets. Furthermore,
action recognition and tool segmentation algorithms are often trained and make
predictions in isolation from each other, without exploiting potential
cross-task relationships. With the EndoVis 2022 SAR-RARP50 challenge, we
release the first multimodal, publicly available, in-vivo, dataset for surgical
action recognition and semantic instrumentation segmentation, containing 50
suturing video segments of Robotic Assisted Radical Prostatectomy (RARP). The
aim of the challenge is twofold. First, to enable researchers to leverage the
scale of the provided dataset and develop robust and highly accurate
single-task action recognition and tool segmentation approaches in the surgical
domain. Second, to further explore the potential of multitask-based learning
approaches and determine their comparative advantage against their single-task
counterparts. A total of 12 teams participated in the challenge, contributing 7
action recognition methods, 9 instrument segmentation techniques, and 4
multitask approaches that integrated both action recognition and instrument
segmentation. The complete SAR-RARP50 dataset is available at:
https://rdr.ucl.ac.uk/projects/SARRARP50_Segmentation_of_surgical_instrumentation_and_Action_Recognition_on_Robot-Assisted_Radical_Prostatectomy_Challenge/19109
Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas
The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13 significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma
- …
