20 research outputs found
Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications
In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promisePublikacja w ramach programu Royal Society of Chemistry "Gold for Gold" 2014 finansowanego przez Uniwersytet Łódzk
Minimally invasive supraomohyoid neck dissection by total endoscopic technique for oral squamous carcinoma
Simultaneous estimation of Guggulsterone E & Z and Tinosporaside in Jivitprada vati by HPTLC method
Fibrous drugs for curing various common health problems
In the past 50 years, dietary fiber has become an increasingly significant area of nutritional focus, debate, and research. Advances in food production practices have resulted in more refined foods being available and consumed across the world and particularly in developed nations such as the US. While refined foods are typically more palatable to consumers, the content of dietary fiber is greatly reduced. Currently, many diseases are believed to be associated with a lack of dietary fiber intake and, furthermore, significant health benefits are thought possible via increased consumption of many dietary fibers. There is no well accepted definition for dietary fiber, but most of the references mention the inability of humans to fully digest fibers; most others say about fibers being made of various monomer units of variable length and some mention plant origin. There are many raw materials/ingredients that can increase the fiber content in foods, each with its own set of functional and sensory characteristics, including acacia gum, beta-glucan, cellulose, chitin/chitosan, corn bran, corn fiber, inulin, oat bran/oat fiber, pea fiber, pectin, polydextrose, psyllium, resistant starch, rice bran, soy fibers, wheat bran, and wheat fiber. All these fibers are unique in their functional capability for treatment of number of diseases
Current Trends of Nanotechnology for Cancer Therapy
Nanoparticulate technology is of particular use in developing a new generation of more effective cancer therapies capable of overcoming many biological, biophysical and biomedical barriers that the body stages against a standard intervention. Targeted delivery of drug molecules to tumor tissue is one of the most interesting and challenging endeavors faced in pharmaceutical field, due to the critical and pharmacokinetically specific environment that exists in tumor. Over these years, cancer targeting treatment has been greatly improved by new tools and approaches based on nanotechnology. Nanoparticles show much promise in cancer therapy by selectively gaining access to tumor due to their small size and modifiability. In this review, nonmaterial and biomarkers of cancer, general principle of drug targeting to cancer, intracellular mechanisms, nanoparticles based formulation in market, several recent applications in medicine as diagnostic and therapeutic are discussed. The review’s basic approach is: the defining features of cancer nanotechnology are embedded in their breakthrough potential for design and development of nanoparticle based drugs.</jats:p
In vitro cytotoxicity study of agave Americana, strychnos Nuxvomica and Areca catechu extracts using MCF-7 cell line
Research is focusing on the search for new types of natural chemotherapeutic agent that is plant based medicines which are proving to be excellent sources of new compounds. In present research study, an attempt was made to prove cytotoxicity activity of various parts of medicinal plants such as Agave americana, Strychnos nux-vomica and Areca catechu using MCF-7 and Vero cell line. Various parts of the medicinal plants were extracted by soxhlet apparatus using solvents likes methanol and water. By trypan blue dye exclusion method, Viability of MCF-7 and Vero cell lines were 85.50 and 81.13%, respectively. IC 50 value of methanol extract of Agave americana leaves and aqueous extract of Afeca catechu fruits were found to be 545.9 & 826.1 μg/ml by SRB assay and 775.1 & 1461pg/ml by MTT assay, respectively, against MCF-7 cell line. From cytotoxicity study data by SRB and MTT assay, it revealed that methanol extract of Agave americana and aqueous extract of Areca catechu are potent cytotoxic
IN VITRO CYTOTOXICITY STUDY OF AGAVE AMERICANA, STRYCHNOS NUX-VOMICA AND ARECA CATECHU EXTRACTS USING MCF-7 CELL LINE
Research is focusing on the search for new types of natural chemotherapeutic agent that is plant based medicines which are proving to be excellent sources of new compounds. In present research study, an attempt was made to prove cytotoxicity activity of various parts of medicinal plants such as Agave americana, Strychnos nux-vomica and Areca catechu using MCF-7 and Vero cell line. Various parts of the medicinal plants were extracted by soxhlet apparatus using solvents likes methanol and water. By trypan blue dye exclusion method, Viability of MCF-7 and Vero cell lines were 85.50 and 81.13%, respectively. IC50 value of methanol extract of Agave americana leaves and aqueous extract of Areca catechu fruits were found to be 545.9 & 826.1 µg/ml by SRB assay and 775.1 & 1461µg/ml by MTT assay, respectively, against MCF-7 cell line. From cytotoxicity study data by SRB and MTT assay, it revealed that methanol extract of Agave americana and aqueous extract of Areca catechu are potent cytotoxic
