345 research outputs found
The bactericidal effect of dendritic copper microparticles, contained in an alginate matrix, on Escherichia coli.
Although the bactericidal effect of copper has been known for centuries, there is a current resurgence of interest in the use of this element as an antimicrobial agent. During this study the use of dendritic copper microparticles embedded in an alginate matrix as a rapid method for the deactivation of Escherichia coli ATCC 11775 was investigated. The copper/alginate produced a decrease in the minimum inhibitory concentration from free copper powder dispersed in the media from 0.25 to 0.065 mg/ml. Beads loaded with 4% Cu deactivated 99.97% of bacteria after 90 minutes, compared to a 44.2% reduction in viability in the equivalent free copper powder treatment. There was no observed loss in the efficacy of this method with increasing bacterial loading up to 10(6) cells/ml, however only 88.2% of E. coli were deactivated after 90 minutes at a loading of 10(8) cells/ml. The efficacy of this method was highly dependent on the oxygen content of the media, with a 4.01% increase in viable bacteria observed under anoxic conditions compared to a >99% reduction in bacterial viability in oxygen tensions above 50% of saturation. Scanning electron micrographs (SEM) of the beads indicated that the dendritic copper particles sit as discrete clusters within a layered alginate matrix, and that the external surface of the beads has a scale-like appearance with dendritic copper particles extruding. E. coli cells visualised using SEM indicated a loss of cellular integrity upon Cu bead treatment with obvious visible blebbing. This study indicates the use of microscale dendritic particles of Cu embedded in an alginate matrix to effectively deactivate E. coli cells and opens the possibility of their application within effective water treatment processes, especially in high particulate waste streams where conventional methods, such as UV treatment or chlorination, are ineffective or inappropriate
Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly
Chitosan (Ch) microspheres have been developed
by precipitation method, cross-linked with glutaraldehyde
and used as a template for layer-by-layer (LBL)
deposition of two natural polyelectrolytes. Using a LBL
methodology, Ch microspheres were alternately coated with
hyaluronic acid (HA) and Ch under mild conditions. The
roughness of the Ch-based crosslinked microspheres was
characterized by atomic force microscopy (AFM). Morphological
characterization was performed by environmental
scanning electron microscopy (ESEM), scanning
electron microscopy (SEM) and stereolight microscopy.
The swelling behaviour of the microspheres demonstrated
that the ones with more bilayers presented the highest water
uptake and the uncoated cross-linked Ch microspheres
showed the lowest uptake capability. Microspheres presented
spherical shape with sizes ranging from 510 to
840 lm. ESEM demonstrated that a rougher surface with
voids is formed in multilayered microspheres caused by the
irregular stacking of the layers. A short term mechanical
stability assay was also performed, showing that the LBL
procedure with more than five bilayers of HA/Ch over Ch
cross-linked microspheres provide higher mechanical
stability
Chemoradiation for the treatment of epidermoid anal cancer: 13-year follow-up of the first randomised UKCCCR Anal Cancer Trial (ACT I)
Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics
Introduction: In previous studies carried out in our laboratory, a bile acid (BA) formulation exerted a hypoglycaemic effect in a rat model of type-1 diabetes (T1D). When the antidiabetic drug gliclazide (G) was added to the bile acid, it augmented the hypoglycaemic effect. In a recent study, we designed a new formulation of gliclazide-cholic acid (G-CA), with good structural properties, excipient compatibility and exhibits pseudoplastic-thixotropic characteristics. The aim of this study is to test the slow release and pH-controlled properties of this new formulation. The aim is also to examine the effect of CA on G release kinetics at various pH values and different temperatures. Method: Microencapsulation was carried out using our Buchi-based microencapsulating system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations were prepared: G-SA (control) and G-CA-SA (test) at a constant ratio (1:3:30), respectively. Microcapsules were examined for efficiency, size, release kinetics, stability and swelling studies at pH 1.5, pH 3, pH 7.4 and pH 7.8 and temperatures of 20 and 30 °C. Results: The new formulation is further optimised by the addition of CA. CA reduced microcapsule swelling of the microcapsules at pH 7.8 and pH 3 at 30 °C and pH 3 at 20 °C, and, even though microcapsule size remains similar after CA addition, percent G release was enhanced at high pH values (pH 7.4 and pH 7.8, p < 0.01). Conclusion: The new formulation exhibits colon-targeted delivery and the addition of CA prolonged G release suggesting its suitability for the sustained and targeted delivery of G and CA to the lower intestine
AsiFood and its output and prospects: An Erasmus+ project on capacity building in food safety and quality for South-East Asia
The Asifood project is a capacity building project in the field of higher education involving collaboration among thirteen partners from Cambodia, Thailand, Vietnam, Austria, Belgium, Italy and France. This project aimed to support the universities in Vietnam, Thailand and Cambodia in building their capacities and their link with professionals in food safety and food quality, in the context of ASEAN integration. Further, training for trainers around a key theme, ‘food safety and quality’ for partner countries was set up involving students and teachers, professional stakeholders, political decision-makers and association leaders. During the first year of the project, study and diagnostic phase were carried out to properly assess the training as per each university needs. In the second year, the training paths around three axes: courses, quality and laboratory analysis were conducted. Finally, a test phase was carried out with the partners by inserting the modules created in the bachelor's and master's degree courses offered by the universities as well as short term trainings on innovations in food safety and quali
Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres
The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS) based on sodium alginate (SA) as a hydrophilic carrier in combination with chitosan (CH) and sodium carboxymethyl cellulose (SCMC) as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR) for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD) and Differential Scanning Calorimetric Analysis (DSC) to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi
Chemoradiotherapy with or without consolidation chemotherapy using cisplatin and 5-fluorouracil in anal squamous cell carcinoma: long-term results in 31 patients
<p>Abstract</p> <p>Background</p> <p>The objectives of this study were to evaluate long-term results of concurrent chemoradiotherapy (CRT) with 5-fluorouracil and cisplatin and the potential benefit of consolidation chemotherapy in patients with anal squamous cell carcinoma (ASCC).</p> <p>Methods</p> <p>Between January 1995 and February 2006, 31 patients with ASCC were treated with CRT. Radiotherapy was administered at 45 Gy over 5 weeks, followed by a boost of 9 Gy to complete or partial responders. Chemotherapy consisted of 5-fluorouracil (750 or 1,000 mg/m<sup>2</sup>) daily on days 1 to 5 and days 29 to 33; and, cisplatin (75 or 100 mg/m<sup>2</sup>) on day 2 and day 30. Twelve patients had T3–4 disease, whereas 18 patients presented with lymphadenopathy. Twenty-one (67.7%) received consolidation chemotherapy with the same doses of 5-fluorouracil and cisplatin, repeated every 4 weeks for maximum 4 cycles.</p> <p>Results</p> <p>Nineteen patients (90.5%) completed all four courses of consolidation chemotherapy. After CRT, 28 patients showed complete responses, while 3 showed partial responses. After a median follow-up period of 72 months, the 5-year overall, disease-free, and colostomy-free survival rates were 84.7%, 82.9% and 96.6%, demonstrating that CRT with 5-fluorouracil and cisplatin yields a good outcome in terms of survival and sphincter preservation. No differences in 5-year OS and DFS rates between patients treated with CRT alone and CRT with consolidation chemotherapy was observed.</p> <p>Conclusion</p> <p>our study shows that CRT with 5-FU and cisplatin, with or without consolidation chemotherapy, was well tolerated and proved highly encouraging in terms of long-term survival and the preservation of anal function in ASCC. Further trials with a larger patient population are warranted in order to evaluate the potential role of consolidation chemotherapy.</p
Concurrent cisplatin, continuous infusion fluorouracil and radiotherapy followed by tailored consolidation treatment in non metastatic anal squamous cell carcinoma
BACKGROUND: To evaluate efficacy and feasibility of chemo-radiotherapy in patients with non-metastatic anal squamous-cell-cancer.
METHODS: TNM staged anal squamous-cell cancer patients were treated with pelvic radiotherapy concomitant to continuous infusion fluorouracil plus cisplatin for at least 2 cycles. In T3-T4 or any T - N+ tumours or in "slow-responder" cases, 1-2 chemotherapy courses were subsequently administered. Tumour assessment was performed at baseline and 6-8 weeks after radiotherapy to evaluate response.
RESULTS: 29 patients were enrolled: 4 males, 25 females; median age 57 years; baseline T1/T2/T3/T4 2/12/7/8; N involvement 17. Median dose pelvic radiotherapy was 59.4 Gy (range: 54-74). In 5 patients 2 chemotherapy courses, in 12 patients three and in 12 patients four courses were performed. At first evaluation, 27 CR (93.1%; 95% CI: 78% - 98%) and 2 SD were observed. Main grade (G) 3 toxic events were neutropenia (8%), diarrhoea (8%) and dermatitis (62%). Most frequent late events G3-G4 occurred in 14 patients: proctitis (5), dermatitis (4), bladder dysfunctions (2), sexual dysfunctions (9), lower extremity venous thromboses (2), dysuria (1), stenosis (1) and tenesmus (1). Five patients reported G1 leucopoenia. The rate of colostomy was 14%. After a median follow up of 42 months (range: 4-81), 20 patients are still alive without relapse and 3 died due to PD. The estimated 7-year DFS was 83.4% (C.I.: 68.3%-98.5%) and the estimated 7-year OS was 85.7% (C.I.: 70% - 100%). The 1-year and the estimated 7-year colostomy-free survivals were 85.9% (C.I.: 73.1% - 98.7%).
CONCLUSIONS: Concurrent cisplatin plus fluorouracil and radiotherapy is associated with favourable local control rates and acute toxicity. Future investigations will be directed towards research into molecular biomarkers related to disease progression and resistance to chemo-radiotherapy and to the evaluation of new cytotoxic agents or targeted drugs, such as anti-epidermal growth factor receptor, concomitant to RT and to determining the role of intensity-modulated radiotherap
Quality of life and tumor control after short split-course chemoradiation for anal canal carcinoma
<p>Abstract</p> <p>Purpose</p> <p>To evaluate quality of life (QOL) and outcome of patients with anal carcinoma treated with short split-course chemoradiation (CRT).</p> <p>Methods</p> <p>From 1991 to 2005, 58 patients with anal cancer were curatively treated with CRT. External beam radiotherapy (52 Gy/26 fractions) with elective groin irradiation (24 Gy) was applied in 2 series divided by a median gap of 12 days. Chemotherapy including fluorouracil and Mitomycin-C was delivered in two sequences. Long-term QOL was assessed using the site-specific EORTC QLQ-CR29 and the global QLQ-C30 questionnaires.</p> <p>Results</p> <p>Five-year local control, colostomy-free survival, and overall survival were 78%, 94% and 80%, respectively. The global QOL score according to the QLQ-C30 was good with 70 out of 100. The QLQ-CR29 questionnaire revealed that 77% of patients were mostly satisfied with their body image. Significant anal pain or fecal incontinence was infrequently reported. Skin toxicity grade 3 or 4 was present in 76% of patients and erectile dysfunction was reported in 100% of male patients.</p> <p>Conclusions</p> <p>Short split-course CRT for anal carcinoma seems to be associated with good local control, survival and long-term global QOL. However, it is also associated with severe acute skin toxicity and sexual dysfunction. Implementation of modern techniques such as intensity-modulated radiation therapy (IMRT) might be considered to reduce toxicity.</p
Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus
ABSTRACT This paper describes the preparation and characterization of alginate beads coated with gelatin and containing Lactobacillus rhamnosus. Capsules were obtained by extrusion method using CaCl2 as cross linker. An experimental design was performed using alginate and gelatin concentrations as the variables investigated, while the response variable was the concentration of viable cells. Beads were characterized in terms of size, morphology, scanning electron microscopy (SEM), moisture content, Fourier Transform Infrared Spectrometry (FTIR), thermal behavior and cell viability during storage. The results showed that the highest concentration of viable cells (4.2 x 109 CFU/g) was obtained for 1 % w/v of alginate and 0.1 % w/v of gelatin. Capsules were predominantly spherical with a rough surface, a narrow size distribution ranging from 1.53 to 1.90 mm and a moisture content of 97.70 ± 0.03 %. Furthermore, FTIR and thermogravimetric analysis indicated an interaction between alginate-gelatin. Cell concentration of alginate/gelatin microcapsules was 105 CFU/g after 4 months of storage at 8 oC
- …
