311 research outputs found
Generalization of Classical Statistical Mechanics to Quantum Mechanics and Stable Property of Condensed Matter
Classical statistical average values are generally generalized to average
values of quantum mechanics, it is discovered that quantum mechanics is direct
generalization of classical statistical mechanics, and we generally deduce both
a new general continuous eigenvalue equation and a general discrete eigenvalue
equation in quantum mechanics, and discover that a eigenvalue of quantum
mechanics is just an extreme value of an operator in possibility distribution,
the eigenvalue f is just classical observable quantity. A general classical
statistical uncertain relation is further given, the general classical
statistical uncertain relation is generally generalized to quantum uncertainty
principle, the two lost conditions in classical uncertain relation and quantum
uncertainty principle, respectively, are found. We generally expound the
relations among uncertainty principle, singularity and condensed matter
stability, discover that quantum uncertainty principle prevents from the
appearance of singularity of the electromagnetic potential between nucleus and
electrons, and give the failure conditions of quantum uncertainty principle.
Finally, we discover that the classical limit of quantum mechanics is classical
statistical mechanics, the classical statistical mechanics may further be
degenerated to classical mechanics, and we discover that only saying that the
classical limit of quantum mechanics is classical mechanics is mistake. As
application examples, we deduce both Shrodinger equation and state
superposition principle, deduce that there exist decoherent factor from a
general mathematical representation of state superposition principle, and the
consistent difficulty between statistical interpretation of quantum mechanics
and determinant property of classical mechanics is overcome.Comment: 10 page
Nonadiabatic noncyclic geometric phase and ensemble average spectrum of conductance in disordered mesoscopic rings with spin-orbit coupling
We generalize Yang's theory from the U(1) gauge field to the non-Abelian
gauge field. Based on this generalization and taking
into account the geometric Pancharatnam phase as well as an effective
Aharonov-Bohm (AB) phase in nonadiabatic noncyclic transport, we calculate the
ensemble average Fourier spectrum of the conductance in disordered mesoscopic
rings connected to two leads. Our theory can explain the experimental results
reported by Morpurgo {\sl et al.} [Phys. Rev. Lett. {\bf 80}, 1050 (1998)]
satisfactorily. In particular, we clarify that the experimentally observed
splitting, as well as some structure on the sides of the main peak in the
ensemble average Fourier spectrum, stem from the nonadiabatic noncyclic
Pancharatnam phase and the effective AB phase, both being dependent on
spin-orbit coupling.Comment: 5 pages, 1 figure. A slightly revised version, and re-submitted to
PRL on Mar. 14, 200
Radiation reaction for multipole moments
We propose a Poincare-invariant description for the effective dynamics of
systems of charged particles by means of intrinsic multipole moments. To
achieve this goal we study the effective dynamics of such systems within two
frameworks -- the particle itself and hydrodynamical one. We give a
relativistic-invariant definition for the intrinsic multipole moments both
pointlike and extended relativistic objects. Within the hydrodynamical
framework we suggest a covariant action functional for a perfect fluid with
pressure. In the case of a relativistic charged dust we prove the equivalence
of the particle approach to the hydrodynamical one to the problem of radiation
reaction for multipoles. As the particular example of a general procedure we
obtain the effective model for a neutral system of charged particles with
dipole moment.Comment: 12 pages, 1 figure, RevTeX 4; references updated, minor textual
correction
Self-Cleaning Glass of Photocatalytic Anatase TiO2@Carbon Nanotubes Thin Film by Polymer-Assisted Approach
Due to the good photocatalytic activity, the TiO2@CNTs thin film is highly desirable to apply to the self-cleaning glass for green intelligent building. Here, the TiO2@CNTs thin film has been successfully achieved by polymer-assisted approach of an aqueous chemical solution method. The polymer, polyethylenimine, aims to combine the Ti4+ with CNTs for film formation of TiO2@CNTs. The resultant thin film was uniform, highly transparent, and super-hydrophilic. Owing to fast electron transport and effectively hindering electron-hole recombination, the TiO2@CNTs thin film has nearly twofold photocatalytic performance than pure TiO2. The TiO2@CNTs thin films show a good application for self-cleaning glasses
Heteropolyacid-based materials as heterogeneous photocatalysts
Heteropolyacids (HPAs) that are often used as heteropolyanions are cheap and stable compounds that have been extensively used as acid and oxidation catalysts as a result of their strong Brønsted acidity and ability to undergo multielectron-transfer reactions. HPAs, which are very soluble in water and polar solvents, have been also used as homogeneous photocatalysts for the oxidation of organic substrates in the presence of oxygen, but their use in heterogeneous systems is by far desirable. Dispersing HPAs onto solid supports with high surface area is useful to increase their specific surface area and hence (photo)catalytic activity. Moreover, owing to the high energy gap between the HOMO and LUMO positions of the HPAs, these compounds are activated only by UV light. Consequently, only less than 5 % of the solar light can be used in photocatalytic reactions, which restricts the practical application of HPAs. This microreview is oriented to describe the reported literature on the use of HPA-based materials as heterogeneous photocatalysts for environmental purposes, that is, for the complete or partial oxidation or reduction of organic molecules
A review of combined advanced oxidation technologies for the removal of organic pollutants from water
Water pollution through natural and anthropogenic activities has become a global problem causing short-and long-term impact on human and ecosystems. Substantial quantity of individual or mixtures of organic pollutants enter the surface water via point and nonpoint sources and thus affect the quality of freshwater. These pollutants are known to be toxic and difficult to remove by mere biological treatment. To date, most researches on the removal of organic pollutants from wastewater were based on the exploitation of individual treatment process. This single-treatment technology has inherent challenges and shortcomings with respect to efficiency and economics. Thus, application of two advanced treatment technologies characterized with high efficiency with respect to removal of primary and disinfection by-products in wastewater is desirable. This review article focuses on the application of integrated technologies such as electrohydraulic discharge with heterogeneous photocatalysts or sonophotocatalysis to remove target pollutants. The information gathered from more than 100 published articles, mostly laboratories studies, shows that process integration effectively remove and degrade recalcitrant toxic contaminants in wastewater better than single-technology processing. This review recommends an improvement on this technology (integrated electrohydraulic discharge with heterogeneous photocatalysts) viz-a-vis cost reduction in order to make it accessible and available in the rural and semi-urban settlement. Further recommendation includes development of an economic model to establish the cost implications of the combined technology. Proper monitoring, enforcement of the existing environmental regulations, and upgrading of current wastewater treatment plants with additional treatment steps such as photocatalysis and ozonation will greatly assist in the removal of environmental toxicants
Investigating International Time Trends in the Incidence and Prevalence of Atopic Eczema 1990-2010: A Systematic Review of Epidemiological Studies
The prevalence of atopic eczema has been found to have increased greatly in some parts of the world. Building on a systematic review of global disease trends in asthma, our objective was to study trends in incidence and prevalence of atopic eczema. Disease trends are important for health service planning and for generating hypotheses regarding the aetiology of chronic disorders. We conducted a systematic search for high quality reports of cohort, repeated cross-sectional and routine healthcare database-based studies in seven electronic databases. Studies were required to report on at least two measures of the incidence and/or prevalence of atopic eczema between 1990 and 2010 and needed to use comparable methods at all assessment points. We retrieved 2,464 citations, from which we included 69 reports. Assessing global trends was complicated by the use of a range of outcome measures across studies and possible changes in diagnostic criteria over time. Notwithstanding these difficulties, there was evidence suggesting that the prevalence of atopic eczema was increasing in Africa, eastern Asia, western Europe and parts of northern Europe (i.e. the UK). No clear trends were identified in other regions. There was inadequate study coverage worldwide, particularly for repeated measures of atopic eczema incidence. Further epidemiological work is needed to investigate trends in what is now one of the most common long-term disorders globally. A range of relevant measures of incidence and prevalence, careful use of definitions and description of diagnostic criteria, improved study design, more comprehensive reporting and appropriate interpretation of these data are all essential to ensure that this important field of epidemiological enquiry progresses in a scientifically robust manner
Evaluating the Performance of Rice Genotypes for Improving Yield and Adaptability Under Direct Seeded Aerobic Cultivation Conditions
With the changing climatic conditions and reducing labor-water availability, the potential contribution of aerobic rice varieties and cultivation system to develop a sustainable rice based agri-food system has never been more important than today. Keeping in mind the goal of identifying high-yielding aerobic rice varieties for wider adaptation, a set of aerobic rice breeding lines were developed and evaluated for grain yield, plant height, and days to 50% flowering in 23 experiments conducted across different location in Philippines, India, Bangladesh, Nepal, and Lao-PDR between 2014 and 2017 in both wet and dry seasons. The heritability for grain yield ranged from 0.52 to 0.90. The season-wise two-stage analysis indicated significant genotype x location interaction for yield under aerobic conditions in both wet and dry seasons. The genotype × season × location interaction for yield was non-significant in both seasons indicating that across seasons the genotypes at each location did not show variability in the grain yield performance. Mean grain yield of the studied genotypes across different locations/seasons ranged from 2,085 to 6,433 Kg ha−1. The best-fit model for yield stability with low AIC value (542.6) was AMMI(1) model. The identified stable genotypes; IR 92521-143-2-2-1, IR 97048-10-1-1-3, IR 91326-7-13-1-1, IR 91326-20-2-1-4, and IR 91328-43-6-2-1 may serve as novel breeding material for varietal development under aerobic system of rice cultivation. High yield and stable performance of promising breeding lines may be due to presence of the earlier identified QTLs including grain yield under drought, grain yield under aerobic conditions, nutrient uptake, anaerobic germination, adaptability under direct seeded conditions, and tolerance to biotic stress resistance such as qDTY2.1, qDTY3.1, qDTY12.1, qNR5.1, AG9.1, qEVV9.1, qRHD1.1, qRHD5.1, qRHD8.1qEMM1.1, qGY6.1, BPH3, BPH17, GM4, xa4, Xa21, Pita, and Pita2. The frequency of xa4 gene was highest followed by qAG9.1, GM4, qDTY3.1, qDTY2.1, qGY6.1, and qDTY12.1
The Jamaica asthma and allergies national prevalence survey: rationale and methods
<p>Abstract</p> <p>Background</p> <p>Asthma is a significant public health problem in the Caribbean. Prevalence surveys using standardized measures of asthma provide valid prevalence estimates to facilitate regional and international comparisons and monitoring of trends. This paper describes methods used in the Jamaica Asthma and Allergies National Prevalence Survey, challenges associated with this survey and strategies used to overcome these challenges.</p> <p>Methods/Design</p> <p>An island wide, cross-sectional, community-based survey of asthma, asthma symptoms and allergies was done among adults and children using the European Community Respiratory Health Survey Questionnaire for adults and the International Study of Asthma and Allergies in Children. Stratified multi-stage cluster sampling was used to select 2, 163 adults aged 18 years and older and 2, 017 children aged 2-17 years for the survey. The Kish selection table was used to select one adult and one child per household. Data analysis accounted for sampling design and prevalence estimates were weighted to produce national estimates.</p> <p>Discussion</p> <p>The Jamaica Asthma and Allergies National Prevalence Survey is the first population- based survey in the Caribbean to determine the prevalence of asthma and allergies both in adults and children using standardized methods. With response rates exceeding 80% in both groups, this approach facilitated cost-effective gathering of high quality asthma prevalence data that will facilitate international and regional comparison and monitoring of asthma prevalence trends. Another unique feature of this study was the partnership with the Ministry of Health in Jamaica, which ensured the collection of data relevant for decision-making to facilitate the uptake of research evidence. The findings of this study will provide important data on the burden of asthma and allergies in Jamaica and contribute to evidence-informed planning of comprehensive asthma management and education programs.</p
Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes
Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal ‘sentinel’ surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (=3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has becomedominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortium’s aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies
- …
