359 research outputs found

    Joint Design and Separation Principle for Opportunistic Spectrum Access in the Presence of Sensing Errors

    Full text link
    We address the design of opportunistic spectrum access (OSA) strategies that allow secondary users to independently search for and exploit instantaneous spectrum availability. Integrated in the joint design are three basic components: a spectrum sensor that identifies spectrum opportunities, a sensing strategy that determines which channels in the spectrum to sense, and an access strategy that decides whether to access based on imperfect sensing outcomes. We formulate the joint PHY-MAC design of OSA as a constrained partially observable Markov decision process (POMDP). Constrained POMDPs generally require randomized policies to achieve optimality, which are often intractable. By exploiting the rich structure of the underlying problem, we establish a separation principle for the joint design of OSA. This separation principle reveals the optimality of myopic policies for the design of the spectrum sensor and the access strategy, leading to closed-form optimal solutions. Furthermore, decoupling the design of the sensing strategy from that of the spectrum sensor and the access strategy, the separation principle reduces the constrained POMDP to an unconstrained one, which admits deterministic optimal policies. Numerical examples are provided to study the design tradeoffs, the interaction between the spectrum sensor and the sensing and access strategies, and the robustness of the ensuing design to model mismatch.Comment: 43 pages, 10 figures, submitted to IEEE Transactions on Information Theory in Feb. 200

    Detection of multiplicative noise in stationary random processes using second- and higher order statistics

    Get PDF
    This paper addresses the problem of detecting the presence of colored multiplicative noise, when the information process can be modeled as a parametric ARMA process. For the case of zero-mean multiplicative noise, a cumulant based suboptimal detector is studied. This detector tests the nullity of a specific cumulant slice. A second detector is developed when the multiplicative noise is nonzero mean. This detector consists of filtering the data by an estimated AR filter. Cumulants of the residual data are then shown to be well suited to the detection problem. Theoretical expressions for the asymptotic probability of detection are given. Simulation-derived finite-sample ROC curves are shown for different sets of model parameters

    Cramer–Rao lower bounds for change points in additive and multiplicative noise

    Get PDF
    The paper addresses the problem of determining the Cramer–Rao lower bounds (CRLBs) for noise and change-point parameters, for steplike signals corrupted by multiplicative and/or additive white noise. Closed-form expressions for the signal and noise CRLBs are first derived for an ideal step with a known change point. For an unknown change-point, the noise-free signal is modeled by a sigmoidal function parametrized by location and step rise parameters. The noise and step change CRLBs corresponding to this model are shown to be well approximated by the more tractable expressions derived for a known change-point. The paper also shows that the step location parameter is asymptotically decoupled from the other parameters, which allows us to derive simple CRLBs for the step location. These bounds are then compared with the corresponding mean square errors of the maximum likelihood estimators in the pure multiplicative case. The comparison illustrates convergence and efficiency of the ML estimator. An extension to colored multiplicative noise is also discussed

    Outlier Detection from Network Data with Subnetwork Interpretation

    Full text link
    Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks

    Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret

    Get PDF
    The problem of distributed learning and channel access is considered in a cognitive network with multiple secondary users. The availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions. There is no explicit information exchange or prior agreement among the secondary users. We propose policies for distributed learning and access which achieve order-optimal cognitive system throughput (number of successful secondary transmissions) under self play, i.e., when implemented at all the secondary users. Equivalently, our policies minimize the regret in distributed learning and access. We first consider the scenario when the number of secondary users is known to the policy, and prove that the total regret is logarithmic in the number of transmission slots. Our distributed learning and access policy achieves order-optimal regret by comparing to an asymptotic lower bound for regret under any uniformly-good learning and access policy. We then consider the case when the number of secondary users is fixed but unknown, and is estimated through feedback. We propose a policy in this scenario whose asymptotic sum regret which grows slightly faster than logarithmic in the number of transmission slots.Comment: Submitted to IEEE JSAC on Advances in Cognitive Radio Networking and Communications, Dec. 2009, Revised May 201
    corecore