178 research outputs found

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2r(a)\mathbf S_{2^{-r}}(a) of radius 2r2^{-r}, r1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1

    The Non-Archimedean Theory of Discrete Systems

    Full text link
    In the paper, we study behavior of discrete dynamical systems (automata) w.r.t. transitivity; that is, speaking loosely, we consider how diverse may be behavior of the system w.r.t. variety of word transformations performed by the system: We call a system completely transitive if, given arbitrary pair a,ba,b of finite words that have equal lengths, the system A\mathfrak A, while evolution during (discrete) time, at a certain moment transforms aa into bb. To every system A\mathfrak A, we put into a correspondence a family FA\mathcal F_{\mathfrak A} of continuous maps of a suitable non-Archimedean metric space and show that the system is completely transitive if and only if the family FA\mathcal F_{\mathfrak A} is ergodic w.r.t. the Haar measure; then we find easy-to-verify conditions the system must satisfy to be completely transitive. The theory can be applied to analyze behavior of straight-line computer programs (in particular, pseudo-random number generators that are used in cryptography and simulations) since basic CPU instructions (both numerical and logical) can be considered as continuous maps of a (non-Archimedean) metric space Z2\mathbb Z_2 of 2-adic integers.Comment: The extended version of the talk given at MACIS-201

    Production of (τ+τ)b(\tau^+\tau^-)_b in electron positron collisions

    Full text link
    (τ+τ)b(\tau^+\tau^-)_b is an atom of simple hydrogenlike structure similar to positronium (e+e)b(e^+e^-)_b and (μ+μ)b(\mu^+\mu^-)_b. In this paper energy levels and decay widths of different decay channels of (τ+τ)b(\tau^+\tau^-)_b are given. Cross section of production of this atomic system in e+ee^+e^- annihilation taking into account radiative corrections is calculated. According to our estimates 886 (τ+τ)b(\tau^+\tau^-)_b atoms may be produced at BEPCII and 29 (τ+τ)b(\tau^+\tau^-)_b atoms are produced at VEPP-4M under the present experimental conditions.Comment: 5 pages, submitted to Int. Jour. Mod. Phys.

    Photon Stimulated Desorption and the Effect of Cracking of Condensed Molecules in a Cryogenic Vacuum System

    Get PDF
    The design of the Large Hadron Collider (LHC) vacuum system requires a complete understanding of all processes which may affect the residual gas density in the cold bore of the 1.9 K cryomagnets. A wealth of data has been obtained which may be used to predict the residual gas density inside a cold vacuum system exposed to synchrotron radiation. In this study the effect of cracking of cryosorbed molecules by synchrotron radiation photons has been included. Cracking of the molecular species CO2 and CH4 has been observed in recent studies and these findings have been incorporated in a more detailed dynamic gas density model for the LHC. In this paper, we describe the relevant physical processes and the parameters required for a full evaluation. It is shown that the dominant gas species in the LHC vacuum system with its beam screen are H2 and CO. The important result of this study is that while the surface coverage of cryosorbed CH4 and CO2 molecules is limited due to cracking, the coverage of H2 and CO molecules may increase steadily during the long term operation of the machine

    Reflection of photons and azimuthal distribution of photoelectrons in a cylindrical beam pipe

    Get PDF
    In a cryogenic proton accelerator, such as the LHC, the creation of an electron cloud and generated heat loads resulting from electron bombardment are strongly dependent on the azimuthal distribution of created photoelectrons. In this context, photon reflection and photoelectron yield measurements have been performed using a beam line on the VEPP-2M storage ring. Six electrodes, covering the complete vacuum chamber perimeter, were mounted such that they could be suitably biased, and while one electrode was irradiated with synchrotron radiation the resulting electron current of all others could be measured. A detailed description of the experimental apparatus and the results of the measurements of photon reflection and the azimuthal distribution of generated photoelectrons are presented

    p-Adic Mathematical Physics

    Full text link
    A brief review of some selected topics in p-adic mathematical physics is presented.Comment: 36 page

    The Bending Magnets for the Proton Transfer Line of CNGS

    Get PDF
    The project "CERN neutrinos to Gran Sasso (CNGS)", a collaboration between CERN and the INFN (Gran Sasso Laboratory) in Italy, will study neutrino oscillations in a long base-line experiment. High-energy protons will be extracted from the CERN SPS accelerator, transported through a 727 m long transfer line and focused onto a graphite target to produce a beam of pions and kaons and subsequently neutrinos. The transfer line requires a total of 78 dipole magnets. They were produced in the framework of an in-kind contribution of Germany via DESY to the CNGS project. The normal conducting dipoles, built from laminated steel cores and copper coils, have a core length of 6.3 m, a 37 mm gap height and a nominal field range of 1.38 T - 1.91 T at a maximum current of 4950 A. The magnet design was a collaboration between CERN and BINP. The half-core production was subcontracted to EFREMOV Institute; the coil fabrication, magnet assembly and the field measurements were concluded at BINP in June 2004. The main design issues and results of the acceptance tests, including mechanical, electrical and magnetic field measurements, are discussed

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+ee^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266
    corecore