167 research outputs found

    238U/235U in calcite is more susceptible to carbonate diagenesis

    Get PDF
    The uranium isotopic composition (δ238U) of bulk marine calcium carbonates has been extensively explored as a promising paleoredox proxy to track the extent of global oceanic anoxia in deep time. Multiple studies have examined whether primary calcium carbonates can directly capture seawater δ238U and whether bulk measurements of recent and ancient carbonates preserve seawater U isotope signatures. Here we assess the role of diagenesis in altering δ238U signatures in carbonates sediments that have a primary calcitic mineralogy at the Paleocene-Eocene Thermal Maximum (PETM), an interval with rapid global warming and oceanic deoxygenation at ∼56 million years ago. Although primary abiotic and biogenic calcium carbonates (aragonite and calcite) can directly capture seawater δ238U with small offsets (1 ppm vs. <0.1 ppm), δ238U in calcite should be even more susceptible to diagenesis than that in aragonite. We find strong evidence of this effect in analysis of δ238U in PETM shallow-water carbonate sediments from Drilling Project (ODP) Hole 871C (Limalok Guyot, Pacific Ocean). Our results reveal large fluctuations in bulk carbonate δ238U from −0.69 to +0.71‰ around the PETM boundary but consistently heavier δ238U (between −0.14 and +0.47‰) than modern seawater outside of this interval. The significantly lighter δ238U values than modern seawater were interpreted to result from the operation of a Mn oxide shuttle. The heavier δ238U values are most likely caused by authigenic reductive accumulation of U(IV) in pore waters below the sediment-water interface. We found that carbonate δ238U values higher than modern seawater tend to increase with increasing U/Ca. This relationship is well-explained by an authigenic reductive accumulation model that simply assumes addition to primary calcite during diagenesis of calcitic cements containing isotopically heavier U(IV). Our work confirms expectations that δ238U in primary calcite is more susceptible to the amount of diagenetic cementation compared to primary aragonite, and that variations of δ238U in carbonate sediments with a primary calcitic mineralogy would more dominantly reflect the local redox state of depositional and early diagenetic environments. It is essential to identify the original carbonate mineralogy, the diagenetic history, and constrain the redox state of local deposition environments of sedimentary carbonate rocks when applying bulk carbonate δ238U as a global proxy for oceanic anoxia in deep time

    Carotid atherosclerosis in people of European, South Asian and African Caribbean ethnicity in the Southall and Brent revisited study (SABRE)

    Get PDF
    Background: Atherosclerotic cardiovascular disease (ASCVD) risk differs by ethnicity. In comparison with Europeans (EA) South Asian (SA) people in UK experience higher risk of coronary heart disease (CHD) and stroke, while African Caribbean people have a lower risk of CHD but a higher risk of stroke. Aim: To compare carotid atherosclerosis in EA, SA, and AC participants in the Southall and Brent Revisited (SABRE) study and establish if any differences were explained by ASCVD risk factors. Methods: Cardiovascular risk factors were measured, and carotid ultrasound was performed in 985 individuals (438 EA, 325 SA, 228 AC). Carotid artery plaques and intima-media thickness (cIMT) were measured. Associations of carotid atherosclerosis with ethnicity were investigated using generalised linear models (GLMs), with and without adjustment for non-modifiable (age, sex) and modifiable risk factors (education, diabetes, hypertension, total cholesterol, HDL-C, alcohol consumption, current smoking). Results: Prevalence of any plaque was similar in EA and SA, but lower in AC (16, 16, and 6%, respectively; p < 0.001). In those with plaque, total plaque area, numbers of plaques, plaque class, or greyscale median did not differ by ethnicity; adjustment for risk factors had minimal effects. cIMT was higher in AC than the other ethnic groups after adjustment for age and sex, adjustment for risk factors attenuated this difference. Conclusion: Prevalence of carotid artery atherosclerotic plaques varies by ethnicity, independent of risk factors. Lower plaque prevalence in in AC is consistent with their lower risk of CHD but not their higher risk of stroke. Higher cIMT in AC may be explained by risk factors. The similarity of plaque burden in SA and EA despite established differences in ASCVD risk casts some doubt on the utility of carotid ultrasound as a means of assessing risk across these ethnic groups

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions

    Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Get PDF
    The early Earth was characterized by the absence of oxygen in the ocean–atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5–2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen

    Global marine redox changes drove the rise and fall of the Ediacara biota

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe role of O2 in the evolution of early animals, as represented by some members of the Ediacara biota, has been heavily debated because current geochemical evidence paints a conflicting picture regarding global marine O2 levels during key intervals of the rise and fall of the Ediacara biota. Fossil evidence indicates that the diversification the Ediacara biota occurred during or shortly after the Ediacaran Shuram negative C-isotope Excursion (SE), which is often interpreted to reflect ocean oxygenation. However, there is conflicting evidence regarding ocean oxygen levels during the SE and the middle Ediacaran Period. To help resolve this debate, we examined U isotope variations (δ238U) in three carbonate sections from South China, Siberia, and USA that record the SE. The δ238U data from all three sections are in excellent agreement and reveal the largest positive shift in δ238U ever reported in the geologic record (from ~ −0.74‰ to ~ −0.26‰). Quantitative modeling of these data suggests that the global ocean switched from a largely anoxic state (26%–100% of the seafloor overlain by anoxic waters) to near-modern levels of ocean oxygenation during the SE. This episode of ocean oxygenation is broadly coincident with the rise of the Ediacara biota. Following this initial radiation, the Ediacara biota persisted until the terminal Ediacaran period, when recently published U isotope data indicate a return to more widespread ocean anoxia. Taken together, it appears that global marine redox changes drove the rise and fall of the Ediacara biota.NASADanish Agency for Science, Technology and InnovationNational Science Foundation (NSF)National Key Basic Research Program of ChinaNatural Environment Research Council (NERC)Natural Science Foundation of Chin

    Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    Get PDF
    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution

    Bootstrapping the energy flow in the beginning of life.

    Get PDF
    This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic even

    A global transition to ferruginous conditions in the early Neoproterozoic oceans

    Get PDF
    Eukaryotic life expanded during the Proterozoic eon1, 2.5 to 0.542 billion years ago, against a background of fluctuating ocean chemistry2, 3, 4. After about 1.8 billion years ago, the global ocean is thought to have been characterized by oxygenated surface waters, with anoxic and sulphidic waters in middle depths along productive continental margins and anoxic and iron-containing (ferruginous) deeper waters5, 6, 7. The spatial extent of sulphidic waters probably varied through time5, 6, but this surface-to-deep redox structure is suggested to have persisted until the first Neoproterozoic glaciation about 717 million years ago8, 9, 10, 11. Here we report an analysis of ocean redox conditions throughout the Proterozoic using new and existing iron speciation and sulphur isotope data from multiple cores and outcrops. We find a global transition from sulphidic to ferruginous mid-depth waters in the earliest Neoproterozoic, coincident with the amalgamation of the supercontinent Rodinia at low latitudes. We suggest that ferruginous conditions were initiated by an increase in the oceanic influx of highly reactive iron relative to sulphate, driven by a change in weathering regime and the uptake of sulphate by extensive continental evaporites on Rodinia. We propose that this transition essentially detoxified ocean margin settings, allowing for expanded opportunities for eukaryote diversification following a prolonged evolutionary stasis before one billion years ago

    Molybdenum isotope and trace metal signals in an iron-rich Mesoproterozoic ocean: A snapshot from the Vindhyan Basin, India

    Get PDF
    Fundamental questions persist regarding the redox structure and trace metal content of the Mesoproterozoic oceans. Multiple lines of evidence suggest more widespread anoxia in the deep oceans compared to today, and iron speciation indicates that anoxia was largely accompanied by dissolved ferrous iron (ferruginous conditions) rather than free sulfide (euxinia). Still, exceptions exist—euxinic conditions have been reported from some ocean margin and epeiric sea settings, and oxic conditions were reported in one deeper water environment and are also known from shallow waters. Constraining the temporal evolution of Mesoproterozoic marine redox structure is critical because it likely governed redox-sensitive trace metal availability, which in turn played a significant role in marine diazotrophy and the evolution of early eukaryotes. Here, we present a new, multi-proxy geochemical dataset from the ~1.2 Ga Bijaygarh Shale (Kaimur Group, Vindhyan Basin, India) emphasizing total organic carbon, iron speciation, and trace metal concentrations, as well as sulfur, nitrogen, and molybdenum isotopes. This unit was deposited in an open shelf setting near or just below storm wave base. Taken together, our data provide a unique snapshot of a biologically important shallow shelf setting during the Mesoproterozoic Era, which includes: 1) locally ferruginous waters below the zone of wave mixing, 2) muted enrichment of trace metals sensitive to general anoxia (e.g., chromium) and variable enrichment of trace metals sensitive to euxinia (e.g., molybdenum and, to a lesser extent, vanadium), 3) general sulfate limitation, and 4) nitrogen fixation by molybdenum-nitrogenase and a dominantly anaerobic nitrogen cycle in offshore settings. Differential patterns of trace metal enrichment are consistent with data from other basins and suggest a largely anoxic ocean with limited euxinia during the Mesoproterozoic Era. Our new molybdenum isotope data—the first such data from unambiguously marine shales deposited between 1.4 and 0.75 Ga—record values up to +1.18 ± 0.12‰ that are analogous to data from other Mesoproterozoic shale units. Ultimately, this study provides a broad, multi-proxy perspective on the redox conditions that accompanied early eukaryotic evolution

    Two approaches to the study of the origin of life.

    Get PDF
    This paper compares two approaches that attempt to explain the origin of life, or biogenesis. The more established approach is one based on chemical principles, whereas a new, yet not widely known approach begins from a physical perspective. According to the first approach, life would have begun with - often organic - compounds. After having developed to a certain level of complexity and mutual dependence within a non-compartmentalised organic soup, they would have assembled into a functioning cell. In contrast, the second, physical type of approach has life developing within tiny compartments from the beginning. It emphasises the importance of redox reactions between inorganic elements and compounds found on two sides of a compartmental boundary. Without this boundary, ¿life¿ would not have begun, nor have been maintained; this boundary - and the complex cell membrane that evolved from it - forms the essence of life
    corecore