1,956 research outputs found
Overview of Federal wind energy program
The objectives and strategies of the Federal wind energy program are described. Changes in the program structure and some of the additions to the program are included. Upcoming organizational changes and some budget items are discussed, with particular emphasis on recent significant events regarding new approvals
Coinductive subtyping for abstract compilation of object-oriented languages into Horn formulas
In recent work we have shown how it is possible to define very precise type
systems for object-oriented languages by abstractly compiling a program into a
Horn formula f. Then type inference amounts to resolving a certain goal w.r.t.
the coinductive (that is, the greatest) Herbrand model of f.
Type systems defined in this way are idealized, since in the most interesting
instantiations both the terms of the coinductive Herbrand universe and goal
derivations cannot be finitely represented. However, sound and quite expressive
approximations can be implemented by considering only regular terms and
derivations. In doing so, it is essential to introduce a proper subtyping
relation formalizing the notion of approximation between types.
In this paper we study a subtyping relation on coinductive terms built on
union and object type constructors. We define an interpretation of types as set
of values induced by a quite intuitive relation of membership of values to
types, and prove that the definition of subtyping is sound w.r.t. subset
inclusion between type interpretations. The proof of soundness has allowed us
to simplify the notion of contractive derivation and to discover that the
previously given definition of subtyping did not cover all possible
representations of the empty type
Some Results on the Boundary Control of Systems of Conservation Laws
This note is concerned with the study of the initial boundary value problem
for systems of conservation laws from the point of view of control theory,
where the initial data is fixed and the boundary data are regarded as control
functions. We first consider the problem of controllability at a fixed time for
genuinely nonlinear Temple class systems, and present a description of the set
of attainable configurations of the corresponding solutions in terms of
suitable Oleinik-type estimates. We next present a result concerning the
asymptotic stabilization near a constant state for general systems.
Finally we show with an example that in general one cannot achieve exact
controllability to a constant state in finite time.Comment: 10 pages, 4 figures, conferenc
Quantum and Classical Glass Transitions in
When performed in the proper low field, low frequency limits, measurements of
the dynamics and the nonlinear susceptibility in the model Ising magnet in
transverse field, , prove the existence
of a spin glass transition for = 0.167 and 0.198. The classical behavior
tracks for the two concentrations, but the behavior in the quantum regime at
large transverse fields differs because of the competing effects of quantum
entanglement and random fields.Comment: 5 pages, 5 figures. Updated figure 3 with corrected calibration
information for thermometr
Leave-one-out prediction error of systolic arterial pressure time series under paced breathing
In this paper we show that different physiological states and pathological
conditions may be characterized in terms of predictability of time series
signals from the underlying biological system. In particular we consider
systolic arterial pressure time series from healthy subjects and Chronic Heart
Failure patients, undergoing paced respiration. We model time series by the
regularized least squares approach and quantify predictability by the
leave-one-out error. We find that the entrainment mechanism connected to paced
breath, that renders the arterial blood pressure signal more regular, thus more
predictable, is less effective in patients, and this effect correlates with the
seriousness of the heart failure. The leave-one-out error separates controls
from patients and, when all orders of nonlinearity are taken into account,
alive patients from patients for which cardiac death occurred
On the 2 by 2 weakly hyperbolic systems
We study the wellposedness in the Gevrey classes and in of the Cauchy problem for 2 by 2 weakly hyperbolic systems. In this paper we shall give some conditions to the case that the characteristic roots oscillate rapidly and vanish at an infinite number of points
Proof Relevant Corecursive Resolution
Resolution lies at the foundation of both logic programming and type class
context reduction in functional languages. Terminating derivations by
resolution have well-defined inductive meaning, whereas some non-terminating
derivations can be understood coinductively. Cycle detection is a popular
method to capture a small subset of such derivations. We show that in fact
cycle detection is a restricted form of coinductive proof, in which the atomic
formula forming the cycle plays the role of coinductive hypothesis.
This paper introduces a heuristic method for obtaining richer coinductive
hypotheses in the form of Horn formulas. Our approach subsumes cycle detection
and gives coinductive meaning to a larger class of derivations. For this
purpose we extend resolution with Horn formula resolvents and corecursive
evidence generation. We illustrate our method on non-terminating type class
resolution problems.Comment: 23 pages, with appendices in FLOPS 201
Parametric trace expressions for runtime verification of Java-like programs
Parametric trace expressions are a formalism expressly designed for parametric runtime verification (RV) which has been introduced and successfully employed in the context of runtime monitoring of multiagent systems. Trace expressions are built on the general notion of event type, which allows them to be adopted in different contexts. In this paper we show how trace expressions can be used for conveniently specifying the expected behavior of a Java-like program to be monitored at runtime. Furthermore, we investigate the basic properties of the primitive operators on which trace expressions are coinductively defined in terms of a labeled transition system; this provides a basis for formal reasoning about equivalence of trace expressions and for adopting useful optimization techniques to speed up runtime verification
Quantum and classical relaxation in the proton glass
The hydrogen-bond network formed from a crystalline solution of ferroelectric RbH_2PO_4 and antiferroelectric NH_4H_2PO_4 demonstrates glassy behavior, with proton tunneling the dominant mechanism for relaxation at low temperature. We characterize the dielectric response over seven decades of frequency and quantitatively fit the long-time relaxation by directly measuring the local potential energy landscape via neutron Compton scattering. The collective motion of protons rearranges the hydrogen bonds in the network. By analogy with vortex tunneling in superconductors, we relate the logarithmic decay of the polarization to the quantum-mechanical action
On the lowest eigenvalue of Laplace operators with mixed boundary conditions
In this paper we consider a Robin-type Laplace operator on bounded domains.
We study the dependence of its lowest eigenvalue on the boundary conditions and
its asymptotic behavior in shrinking and expanding domains. For convex domains
we establish two-sided estimates on the lowest eigenvalues in terms of the
inradius and of the boundary conditions
- …
