66,719 research outputs found
Visual and eye movement functions of the posterior parietal cortex
Lesions of the posterior parietal area in humans produce interesting spatial-perceptual and spatial-behavioral deficits. Among the more important deficits observed are loss of spatial memories, problems representing spatial relations in models or drawings, disturbances in the spatial distribution of attention, and the inability to localize visual targets. Posterior parietal lesions in nonhuman primates also produce visual spatial deficits not unlike those found in humans. Mountcastle and his colleagues were the first to explore this area, using single cell recording techniques in behaving monkeys over 13 years ago. Subsequent work by Mountcastle, Lynch and colleagues, Hyvarinen and colleagues, Robinson, Goldberg & Stanton, and Sakata and colleagues during the period of the late 1970s and early 1980s provided an informational and conceptual foundation for exploration of this fascinating area of the brain. Four new directions of research that are presently being explored from this foundation are reviewed in this article.
1. The anatomical and functional organization of the inferior parietal lobule is presently being investigated with neuroanatomical tracing and single cell recording techniques. This area is now known to be comprised of at least four separate cortical fields.
2. Neural mechanisms for spatial constancy are being explored. In area 7a information about eye position is found to be integrated with visual inputs to produce representations of visual space that are head-centered (the meaning of a head-centered coordinate system is explained on p. 13).
3. The role of the posterior parietal cortex, and the pathways projecting into this region, in processing information about motion in the visual world is under investigation. Visual areas within the posterior parietal cortex may play a role in extracting higher level motion information including the perception of structure-from-motion.
4. A previously unexplored area within the intraparietal sulcus has been found whose cells hold a representation in memory of planned eye movements. Special experimental protocols have shown that these cells code the direction and amplitude of intended movements in motor coordinates and suggest that this area plays a role in motor planning
How we see
The visual world is imaged on the retinas of our eyes. However, "seeing"' is not a result of neural functions within the eyes but rather a result of what the brain does with those images. Our visual perceptions are produced by parts of the cerebral cortex dedicated to vision. Although our visual awareness appears unitary, different parts of the cortex analyze color, shape, motion, and depth information. There are also special mechanisms for visual attention, spatial awareness, and the control of actions under visual guidance. Often lesions from stroke or other neurological diseases will impair one of these subsystems, leading to unusual deficits such as the inability to recognize faces, the loss of awareness of half of visual space, or the inability to see motion or color
Interior maps in posterior pareital cortex
The posterior parietal cortex (PPC), historically believed to be a sensory structure, is now viewed as an area important for sensory-motor integration. Among its functions is the forming of intentions, that is, high-level cognitive plans for movement. There is a map of intentions within the PPC, with different subregions dedicated to the planning of eye movements, reaching movements, and grasping movements. These areas appear to be specialized for the multisensory integration and coordinate transformations required to convert sensory input to motor output. In several subregions of the PPC, these operations are facilitated by the use of a common distributed space representation that is independent of both sensory input and motor output. Attention and learning effects are also evident in the PPC. However, these effects may be general to cortex and operate in the PPC in the context of sensory-motor transformations
Renormalization and resummation in the O(N) model
In the O(N) model for the large N expansion one needs resummation which makes
the renormalization of the model difficult. In the paper it is discussed, how
can one perform a consistent perturbation theory at zero as well as at finite
temperature with the help of momentum dependent renormalization schemes.Comment: 4 pages, presented at International Conference on Strong and
Electroweak matter (SEWM 2008), Amsterdam, The Netherlands, 26-29 Aug 200
Three-loop HTLpt thermodynamics at finite temperature and chemical potential
In this proceedings we present a state-of-the-art method of calculating
thermodynamic potential at finite temperature and finite chemical potential,
using Hard Thermal Loop perturbation theory (HTLpt) up to
next-to-next-leading-order (NNLO). The resulting thermodynamic potential
enables us to evaluate different thermodynamic quantities including pressure
and various quark number susceptibilities (QNS). Comparison between our
analytic results for those thermodynamic quantities with the available lattice
data shows a good agreement.Comment: 5 pages, 6 figures, conference proceedings of XXI DAE-BRNS HEP
Symposium, IIT Guwahati, December 2014; to appear in 'Springer Proceedings in
Physics Series
Pinning of stripes by local structural distortions in cuprate high-Tc superconductors
We study the spin-density wave (stripe) instability in lattices with mixed
low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal
symmetry. Within an explicit mean-field model it is shown how local LTT regions
act as pinning centers for static stripe formation. We calculate the
modulations in the local density of states near these local stripe regions and
find that mainly the coherence peaks and the van Hove singularity (VHS) are
spatially modulated. Lastly, we use the real-space approach to simulate recent
tunneling data in the overdoped regime where the VHS has been detected by
utilizing local normal state regions.Comment: Conference proceedings for Stripes1
A new approach to adaptive fuzzy control: the controller output error method
The controller output error method (COEM) is introduced and applied to the design of adaptive fuzzy control systems. The method employs a gradient descent algorithm to minimize a cost function which is based on the error at the controller output. This contrasts with more conventional methods which use the error at the plant output. The cost function is minimized by adapting some or all of the parameters of the fuzzy controller. The proposed adaptive fuzzy controller is applied to the adaptive control of a nonlinear plant and is shown to be capable of providing good overall system performance
Matrix formulation of fuzzy rule-based systems
In this paper, a matrix formulation of fuzzy rule based systems is introduced. A gradient descent training algorithm for the determination of the unknown parameters can also be expressed in a matrix form for various adaptive fuzzy networks. When converting a rule-based system to the proposed matrix formulation, only three sets of linear/nonlinear equations are required instead of set of rules and an inference mechanism. There are a number of advantages which the matrix formulation has compared with the linguistic approach. Firstly, it obviates the differences among the various architectures; and secondly, it is much easier to organize data in the implementation or simulation of the fuzzy system. The formulation will be illustrated by a number of examples
The Intrinsic Ellipticity of Spiral Disks
We have measured the distribution of intrinsic ellipticities for a sample of
28 relatively face-on spiral disks. We combine H-alpha velocity fields and R
and I-band images to determine differences between kinematic and photometric
inclination and position angles, from which we estimate intrinsic ellipticities
of galaxy disks. Our findings suggest disks have a log-normal distribution of
ellipticities (mean epsilon =0.06) and span a range from epsilon= 0 (circular)
to epsilon=0.2. We are also able to construct a tight Tully-Fisher relation for
our face-on sample. We use this to assess the contribution of disk ellipticity
on the observed Tully-Fisher scatter.Comment: 4 pages, 2 figures, to appear in "Disks of Galaxies: Kinematics,
Dynamics and Perturbations" (ASP Conference Series), eds E.Athanassoula and
A. Bosm
- …
