4,140 research outputs found
Evaluation of cystatin C for the detection of chronic kidney disease in cats
BackgroundSerum cystatin C (sCysC) and urinary cystatin C (uCysC) are potential biomarkers for early detection of chronic kidney disease (CKD) in cats. An in-depth clinical validation is required. ObjectivesTo evaluate CysC as a marker for CKD in cats and to compare assay performance of the turbidimetric assay (PETIA) with the previously validated nephelometric assay (PENIA). AnimalsNinety cats were included: 49 CKD and 41 healthy cats. MethodsSerum CysC and uCysC concentrations were prospectively evaluated in cats with CKD and healthy cats. Based on plasma exo-iohexol clearance test (PexICT), sCysC was evaluated to distinguish normal, borderline, and low GFR. Sensitivity and specificity to detect PexICT<1.7mL/min/kg were calculated. Serum CysC results of PENIA and PETIA were correlated with GFR. Statistical analysis was performed using general linear modeling. ResultsCats with CKD had significantly higher meanSD sCysC (1.4 +/- 0.5mg/L) (P<.001) and uCysC/urinary creatinine (uCr) (291 +/- 411mg/mol) (P<.001) compared to healthy cats (sCysC 1.0 +/- 0.3 and uCysC/uCr 0.32 +/- 0.97). UCysC was detected in 35/49 CKD cats. R-2 values between GFR and sCysC or sCr were 0.39 and 0.71, respectively (sCysC or sCr=+GFR+epsilon). Sensitivity and specificity were 22 and 100% for sCysC and 83 and 93% for sCr. Serum CysC could not distinguish healthy from CKD cats, nor normal from borderline or low GFR, in contrast with sCr. ConclusionSerum CysC is not a reliable marker of reduced GFR in cats and uCysC could not be detected in all CKD cats
Three-loop HTL QCD thermodynamics
The hard-thermal-loop perturbation theory (HTLpt) framework is used to
calculate the thermodynamic functions of a quark-gluon plasma to three-loop
order. This is the highest order accessible by finite temperature perturbation
theory applied to a non-Abelian gauge theory before the high-temperature
infrared catastrophe. All ultraviolet divergences are eliminated by
renormalization of the vacuum, the HTL mass parameters, and the strong coupling
constant. After choosing a prescription for the mass parameters, the three-loop
results for the pressure and trace anomaly are found to be in very good
agreement with recent lattice data down to , which are
temperatures accessible by current and forthcoming heavy-ion collision
experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE
Three-loop HTL gluon thermodynamics at intermediate coupling
We calculate the thermodynamic functions of pure-glue QCD to three-loop order
using the hard-thermal-loop perturbation theory (HTLpt) reorganization of
finite temperature quantum field theory. We show that at three-loop order
hard-thermal-loop perturbation theory is compatible with lattice results for
the pressure, energy density, and entropy down to temperatures .
Our results suggest that HTLpt provides a systematic framework that can used to
calculate static and dynamic quantities for temperatures relevant at LHC.Comment: 24 pages, 13 figs. 2nd version: improved discussion and fixing typos.
Published in JHE
Resummation scheme for 3d Yang-Mills and the two-loop magnetic mass for hot gauge theories
Perturbation theory for non-Abelian gauge theories at finite temperature is
plagued by infrared divergences caused by magnetic soft modes ,
which correspond to the fields of a 3d Yang-Mills theory. We revisit a gauge
invariant resummation scheme to solve this problem by self-consistent mass
generation using an auxiliary scalar field, improving over previous attempts in
two respects. First, we generalise earlier SU(2) treatments to SU(N). Second,
we obtain a gauge independent two-loop gap equation, correcting an error in the
literature. The resulting two-loop approximation to the magnetic mass
represents a correction to the leading one-loop value, indicating a
reasonable convergence of the resummation.Comment: 16 pages, 3 figure
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
Nonuniversal scaling behavior of Barkhausen noise
We simulate Barkhausen avalanches on fractal clusters in a two-dimensional
diluted Ising ferromagnet with an effective Gaussian random field. We vary the
concentration of defect sites and find a scaling region for moderate
disorder, where the distribution of avalanche sizes has the form . The exponents for size
and for length distribution, and the fractal dimension of
avalanches satisfy the scaling relation .
For fixed disorder the exponents vary with driving rate in agreement with
experiments on amorphous Si-Fe alloys.Comment: 5 pages, Latex, 4 PostScript figures include
Time preferences and risk aversion: tests on domain differences
The design and evaluation of environmental policy requires the incorporation of time and risk elements as many environmental outcomes extend over long time periods and involve a large degree of uncertainty. Understanding how individuals discount and evaluate risks with respect to environmental outcomes is a prime component in designing effective environmental policy to address issues of environmental sustainability, such as climate change. Our objective in this study is to investigate whether subjects' time preferences and risk aversion across the monetary domain and the environmental domain differ. Crucially, our experimental design is incentivized: in the monetary domain, time preferences and risk aversion are elicited with real monetary payoffs, whereas in the environmental domain, we elicit time preferences and risk aversion using real (bee-friendly) plants. We find that subjects' time preferences are not significantly different across the monetary and environmental domains. In contrast, subjects' risk aversion is significantly different across the two domains. More specifically, subjects (men and women) exhibit a higher degree of risk aversion in the environmental domain relative to the monetary domain. Finally, we corroborate earlier results, which document that women are more risk averse than men in the monetary domain. We show this finding to, also, hold in the environmental domain
How Gaussian competition leads to lumpy or uniform species distributions
A central model in theoretical ecology considers the competition of a range
of species for a broad spectrum of resources. Recent studies have shown that
essentially two different outcomes are possible. Either the species surviving
competition are more or less uniformly distributed over the resource spectrum,
or their distribution is 'lumped' (or 'clumped'), consisting of clusters of
species with similar resource use that are separated by gaps in resource space.
Which of these outcomes will occur crucially depends on the competition kernel,
which reflects the shape of the resource utilization pattern of the competing
species. Most models considered in the literature assume a Gaussian competition
kernel. This is unfortunate, since predictions based on such a Gaussian
assumption are not robust. In fact, Gaussian kernels are a border case
scenario, and slight deviations from this function can lead to either uniform
or lumped species distributions. Here we illustrate the non-robustness of the
Gaussian assumption by simulating different implementations of the standard
competition model with constant carrying capacity. In this scenario, lumped
species distributions can come about by secondary ecological or evolutionary
mechanisms or by details of the numerical implementation of the model. We
analyze the origin of this sensitivity and discuss it in the context of recent
applications of the model.Comment: 11 pages, 3 figures, revised versio
Recommended from our members
A demonstration of 'broken' visual space
It has long been assumed that there is a distorted mapping between real and ‘perceived’ space, based on demonstrations of systematic errors in judgements of slant, curvature, direction and separation. Here, we have applied a direct test to the notion of a coherent visual space. In an immersive virtual environment, participants judged the relative distance of two squares displayed in separate intervals. On some trials, the virtual scene expanded by a factor of four between intervals although, in line with recent results, participants did not report any noticeable change in the scene. We found that there was no consistent depth ordering of objects that can explain the distance matches participants made in this environment (e.g. A > B > D yet also A < C < D) and hence no single one-to-one mapping between participants’ perceived space and any real 3D environment. Instead, factors that affect pairwise comparisons of distances dictate participants’ performance. These data contradict, more directly than previous experiments, the idea that the visual system builds and uses a coherent 3D internal representation of a scene
- …
