17,314 research outputs found

    Cognitive architectures as Lakatosian research programmes: two case studies

    Get PDF
    Cognitive architectures - task-general theories of the structure and function of the complete cognitive system - are sometimes argued to be more akin to frameworks or belief systems than scientific theories. The argument stems from the apparent non-falsifiability of existing cognitive architectures. Newell was aware of this criticism and argued that architectures should be viewed not as theories subject to Popperian falsification, but rather as Lakatosian research programs based on cumulative growth. Newell's argument is undermined because he failed to demonstrate that the development of Soar, his own candidate architecture, adhered to Lakatosian principles. This paper presents detailed case studies of the development of two cognitive architectures, Soar and ACT-R, from a Lakatosian perspective. It is demonstrated that both are broadly Lakatosian, but that in both cases there have been theoretical progressions that, according to Lakatosian criteria, are pseudo-scientific. Thus, Newell's defense of Soar as a scientific rather than pseudo-scientific theory is not supported in practice. The ACT series of architectures has fewer pseudo-scientific progressions than Soar, but it too is vulnerable to accusations of pseudo-science. From this analysis, it is argued that successive versions of theories of the human cognitive architecture must explicitly address five questions to maintain scientific credibility

    Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific Basin

    Get PDF
    Highly precise measurements of CO2 mixing ratios were recorded aboard both the NASA DC-8 and P3-B aircraft during the Pacific Exploratory Mission-Tropics conducted in August-October 1996. Data were obtained at altitudes ranging from 0.1 to 12 km over a large portion of the South Pacific Basin representing the most geographically extensive CO2 data set recorded in this region. These data along with CO2 surface measurements from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) and the National Institute of Water and Atmospheric Research (NIWA) were examined to establish vertical and meridional gradients. The CO2 spatial distribution in the southern hemisphere appeared to be largely determined by interhemispheric transport as air masses with depleted CO2 levels characteristic of northern hemispheric air were frequently observed south of the Intertropical Convergence Zone. However, regional processes also played a role in modulating background concentrations. Comparisons of CO2 with other trace gases indicated that CO2 values were influenced by continental sources. Large scale plumes from biomass burning activities produced enhanced CO2 mixing ratios within the lower to midtroposphere over portions of the remote Pacific. An apparent CO2 source was observed in the NOAA/ CMDL surface data between 15° N and 15° S and in the lower altitude flight data between 8° N and 8.5° S with a zone of intensity from 6.5° N to 1° S. Inferred from these data is the presence of a Southern Ocean sink from south of 15° S having two distinct zones seasonally out of phase with one another. Copyright 1999 by the American Geophysical Union

    Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts

    Get PDF
    The NASA Global Tropospheric Experiment (GTE) Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE A) expedition was conducted September 21 through October 26, 1992, to investigate factors responsible for creating the seasonal South Atlantic tropospheric ozone maximum. During these flights, fine aerosol (0.1-3.0 μm) number densities were observed to be enhanced roughly tenfold over remote regions of the tropical South Atlantic and greater over adjacent continental areas, relative to northern hemisphere observations and to measurements recorded in the same area during Ac wet season. Chemical and meteorological analyses as well as visual observations indicate that the primary source of these enhancements was biomass burning occurring within grassland regions of north central Brazil and southeastern Africa. These fires exhibited fine aerosol (N) emission ratios relative to CO (dN/dCO) of 22.5 ± 9.7 and 23.6 ± 15.1 cm-3 parts per billion by volume (ppbv)-1 over Brazil and Africa, respectively. Convection coupled with counterclockwise flow around the South Atlantic subtropical anticyclone subsequently distributed these aerosols throughout the remote South Atlantic troposphere. We calculate that dilute smoke from biomass burning produced an average tenfold enhancement in optical depth over the continental regions as well as a 50% increase in this parameter over the middle South Atlantic Ocean; these changes correspond to an estimated net cooling of up to 25 W m-2 and 2.4 W m-2 during clear-sky conditions over savannas and ocean respectively. Over the ocean our analyses suggest that modification of CCN concentrations within the persistent eastern Atlantic marine stratocumulus clouds by entrainment of subsiding haze layers could significantly increase cloud albedo resulting in an additional surface radiative cooling potentially greater in magnitude than that caused by direct extinction of solar radiation by the aerosol particles themselves

    Heterotic Line Bundle Standard Models

    Get PDF
    In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the allowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure

    Experiments on Multidimensional Solitons

    Full text link
    This article presents an overview of experimental efforts in recent years related to multidimensional solitons in Bose-Einstein condensates. We discuss the techniques used to generate and observe multidimensional nonlinear waves in Bose-Einstein condensates with repulsive interactions. We further summarize observations of planar soliton fronts undergoing the snake instability, the formation of vortex rings, and the emergence of hybrid structures.Comment: review paper, to appear as Chapter 5b in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag
    corecore