5,464 research outputs found
MERIDIONAL DISTRIBUTIONS OF NO(X), NO(Y) AND OTHER SPECIES IN THE LOWER STRATOSPHERE AND UPPER TROPOSPHERE DURING AASE-II
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Antihypertensive drug class and dyslipidemia: risk association among Chinese patients with uncomplicated hypertension
Factors associated with dyslipidemia in Chinese patients with uncomplicated hypertension were investigated in 1,139 patients newly prescribed a single antihypertensive drug in the public primary healthcare setting in Hong Kong, where their fasting lipid profiles were measured 4 to 16 weeks after the first prescription. Multivariate logistic regression showed that thiazide users were more likely (OR 3.67, 95% C.I. 1.13, 11.88, p=0.030) to have adverse (> 6.2mmol/l) total cholesterol (TC) compared with drugs acting on the renin angiotensin system (RAS), but the absolute difference in mean TC between thiazide users and all patients was small ( 0.14 mmol/l), while advanced age and male gender were also associated with some aspects of dyslipidemia. Clinicians should be aware of the increased risk of dyslipidemia in these groups, but the mild dyslipidemic profile associated with thiazides should not in itself deter its use as a possible first-line antihypertensive agent among Chinese patients
Summertime distribution and relations of reactive odd nitrogen species and NOyin the troposphere over Canada
We report here large-scale features of the distribution of NOx, HNO3, PAN, particle (NO3) (-) and NOy in the troposphere from 0.15 to 6 km altitude over central Canada. These measurements were conducted in July-August 1990 from the NASA Wallops Electra aircraft as part of the joint United States-Canadian Arctic Boundary Layer Expedition (ABLE) 3B-Northern Wetlands Study. Our findings show that this region is generally NOx limited, with NOx mixing ratios typically 20-30 parts per trillion by volume (pptv). We found little direct evidence for anthropogenic enhancement of mixing ratios of reactive odd nitrogen species and NOy above those in "background" air. Instead, it appears that enhancements in the mixing ratios of these species were primarily due to emissions from several day old or CO -rich -NOx-poor smoldering local biomass-burning fires. NOx mixing ratios in biomass-burning impacted air masses were usually <50 pptv, but those of HNO3 and PAN were typically 100-300 pptv representin g a twofold-threefold enhancement over "background" air. During our study period, inputs of what appeared to be aged tropical air were a major factor influencing the distribution of reactive odd nitrogen in the midtroposphere over northeastern North America. These air masses were quite depleted in NOy (generally <150 pptv), and a frequent summertime occurrence of such air masses over this region would imply a significant influence on the reactive odd nitrogen budget. Our findings show that the chemical composition of aged air masses over subarctic Canada and those documented in the Arctic during ABLE 3A have strikingly similar chemistries, suggesting large-scale connection between the air masses influencing these regions
Algebraic charge liquids
High temperature superconductivity emerges in the cuprate compounds upon
changing the electron density of an insulator in which the electron spins are
antiferromagnetically ordered. A key characteristic of the superconductor is
that electrons can be extracted from them at zero energy only if their momenta
take one of four specific values (the `nodal points'). A central enigma has
been the evolution of the zero energy electrons in the metallic state between
the antiferromagnet and the superconductor, and recent experiments yield
apparently contradictory results. The oscillation of the resistance in this
metal as a function of magnetic field indicate that the zero energy electrons
carry momenta which lie on elliptical `Fermi pockets', while ejection of
electrons by high intensity light indicates that the zero energy electrons have
momenta only along arc-like regions. We present a theory of new states of
matter, which we call `algebraic charge liquids', which arise naturally between
the antiferromagnet and the superconductor, and reconcile these observations.
Our theory also explains a puzzling dependence of the density of
superconducting electrons on the total electron density, and makes a number of
unique predictions for future experiments.Comment: 6+8 pages, 2 figures; (v2) Rewritten for broader accessibility; (v3)
corrected numerical error in Eq. (5
Finite temperature phase transition for disordered weakly interacting bosons in one dimension
It is commonly accepted that there are no phase transitions in
one-dimensional (1D) systems at a finite temperature, because long-range
correlations are destroyed by thermal fluctuations. Here we demonstrate that
the 1D gas of short-range interacting bosons in the presence of disorder can
undergo a finite temperature phase transition between two distinct states:
fluid and insulator. None of these states has long-range spatial correlations,
but this is a true albeit non-conventional phase transition because transport
properties are singular at the transition point. In the fluid phase the mass
transport is possible, whereas in the insulator phase it is completely blocked
even at finite temperatures. We thus reveal how the interaction between
disordered bosons influences their Anderson localization. This key question,
first raised for electrons in solids, is now crucial for the studies of atomic
bosons where recent experiments have demonstrated Anderson localization in
expanding very dilute quasi-1D clouds.Comment: 8 pages, 5 figure
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
Guidelines on the measurement of ultraviolet radiation levels in ultraviolet phototherapy:report issued by the British Association of Dermatologists and British Photodermatology Group 2015
Non-Fermi-liquid d-wave metal phase of strongly interacting electrons
Developing a theoretical framework for conducting electronic fluids
qualitatively distinct from those described by Landau's Fermi-liquid theory is
of central importance to many outstanding problems in condensed matter physics.
One such problem is that, above the transition temperature and near optimal
doping, high-transition-temperature copper-oxide superconductors exhibit
`strange metal' behaviour that is inconsistent with being a traditional Landau
Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase
could shed new light on the interesting low-temperature behaviour in the
pseudogap regime and on the d-wave superconductor itself. Here we present a
theory for a specific example of a strange metal---the 'd-wave metal'. Using
variational wavefunctions, gauge theoretic arguments, and ultimately
large-scale density matrix renormalization group calculations, we show that
this remarkable quantum phase is the ground state of a reasonable microscopic
Hamiltonian---the usual t-J model with electron kinetic energy and two-spin
exchange supplemented with a frustrated electron `ring-exchange' term,
which we here examine extensively on the square lattice two-leg ladder. These
findings constitute an explicit theoretical example of a genuine
non-Fermi-liquid metal existing as the ground state of a realistic model.Comment: 22 pages, 12 figures: 6 pages, 7 figures of main text + 16 pages, 5
figures of Supplementary Information; this is approximately the version
published in Nature, minus various subedits in the main tex
Prevention and management of excessive gestational weight gain: a survey of overweight and obese pregnant women
Background - Excessive gestational weight gain is associated with adverse infant, childhood and maternal outcomes and research to develop interventions to address this issue is ongoing. The views of women on gestational weight gain and the resources they would consider helpful in addressing this are however largely unknown. This survey aimed to determine the views of newly pregnant women, living in areas of social disadvantage, on 1) their current body weight and potential gestational weight gain and 2) the resources or interventions they would consider helpful in preventing excessive gestational weight gain.
Methods - A convenience sample of overweight and obese pregnant women living in Fife, UK, were invited to complete a short anonymised questionnaire at their 12 week booking visit.
Results - 428 women, BMI>25 kg/m2, completed the questionnaire. Fifty-four per cent of respondents were obese (231) and 62% were living in areas of mild to moderate deprivation. Over three-quarters of participants felt dissatisfied with their current weight (81%). The majority of women (60%) expressed some concern about potential weight gain. Thirty-nine percent were unconcerned about weight gain during their pregnancy, including 34 women (19%) who reported having retained weight gained in earlier pregnancies. Amongst those concerned about weight gain advice on physical activity (41%) and access to sports/leisure facilities were favoured resources (36%). Fewer women (12%) felt that group sessions on healthy eating or attending a clinic for individualised advice (14%) would be helpful. "Getting time off work" was the most frequently cited barrier (48%) to uptake of resources other than leaflets.
Conclusions- These data suggest a lack of awareness amongst overweight and obese women regarding excessive gestational weight gain. Monitoring of gestational weight gain, and approaches for its management, should be formally integrated into routine antenatal care. Barriers to the uptake of resources to address weight gain are numerous and must be considered in the design of future interventions and services
- …
