622 research outputs found
Thermal Noise Behavior of the Bridge Circuit
This paper considers a connection between the deterministic and noisy behavior
of nonlinear networks. Specifically, a particular bridge circuit is examined which has
two possibly nonlinear energy storage elements. By proper choice of the constitutive
relations for the network elements, the deterministic terminal behavior reduces to that
of a single linear resistor. This reduction of the deterministic terminal behavior, in
which a natural frequency of a linear circuit does not appear in the driving-point
impedance, has been shown in classical circuit theory books (e.g. [1, 2]). The paper
shows that, in addition to the reduction of the deterministic behavior, the thermal
noise at the terminals of the network, arising from the usual Nyquist-Johnson noise
model associated with each resistor in the network, is also exactly that of a single
linear resistor. While this result for the linear time-invariant (LTI) case is a direct
consequence of a well-known result for RLC circuits, the nonlinear result is novel. We
show that the terminal noise current is precisely that predicted by the Nyquist-Johnson
model for R if the driving voltage is zero or constant, but not if the driving voltage is
time-dependent or the inductor and capacitor are time-varyingSupported by the National Science Foundation under Grant 94-23221,
by DARPA/ARO under Contract DAAH04-94-G-0342,
and by the NEC Research Institute, Princeton, New Jersey
An Ensemble Kalman-Particle Predictor-Corrector Filter for Non-Gaussian Data Assimilation
An Ensemble Kalman Filter (EnKF, the predictor) is used make a large change
in the state, followed by a Particle Filer (PF, the corrector) which assigns
importance weights to describe non-Gaussian distribution. The weights are
obtained by nonparametric density estimation. It is demonstrated on several
numerical examples that the new predictor-corrector filter combines the
advantages of the EnKF and the PF and that it is suitable for high dimensional
states which are discretizations of solutions of partial differential
equations.Comment: ICCS 2009, to appear; 9 pages; minor edit
Boson induced s-wave pairing in dilute boson-fermion mixtures
We show that in dilute boson-fermion mixtures with fermions in two internal
states, even when the bare fermion-fermion interaction is repulsive, the
exchange of density fluctuations of the Bose condensate may lead to an
effective fermion-fermion attraction, and thus to a Cooper instability in the
s-wave channel. We give an analytical method to derive the associated in
the limit where the phonon branch of the Bogoliubov excitation spectrum of the
bosons is important. We find a of the same order as for a pure Fermi gas
with bare attraction.Comment: 12 pages, no figure
A Statistically Modelling Method for Performance Limits in Sensor Localization
In this paper, we study performance limits of sensor localization from a
novel perspective. Specifically, we consider the Cramer-Rao Lower Bound (CRLB)
in single-hop sensor localization using measurements from received signal
strength (RSS), time of arrival (TOA) and bearing, respectively, but
differently from the existing work, we statistically analyze the trace of the
associated CRLB matrix (i.e. as a scalar metric for performance limits of
sensor localization) by assuming anchor locations are random. By the Central
Limit Theorems for -statistics, we show that as the number of the anchors
increases, this scalar metric is asymptotically normal in the RSS/bearing case,
and converges to a random variable which is an affine transformation of a
chi-square random variable of degree 2 in the TOA case. Moreover, we provide
formulas quantitatively describing the relationship among the mean and standard
deviation of the scalar metric, the number of the anchors, the parameters of
communication channels, the noise statistics in measurements and the spatial
distribution of the anchors. These formulas, though asymptotic in the number of
the anchors, in many cases turn out to be remarkably accurate in predicting
performance limits, even if the number is small. Simulations are carried out to
confirm our results
Nonlinear Lattice Waves in Random Potentials
Localization of waves by disorder is a fundamental physical problem
encompassing a diverse spectrum of theoretical, experimental and numerical
studies in the context of metal-insulator transition, quantum Hall effect,
light propagation in photonic crystals, and dynamics of ultra-cold atoms in
optical arrays. Large intensity light can induce nonlinear response, ultracold
atomic gases can be tuned into an interacting regime, which leads again to
nonlinear wave equations on a mean field level. The interplay between disorder
and nonlinearity, their localizing and delocalizing effects is currently an
intriguing and challenging issue in the field. We will discuss recent advances
in the dynamics of nonlinear lattice waves in random potentials. In the absence
of nonlinear terms in the wave equations, Anderson localization is leading to a
halt of wave packet spreading.
Nonlinearity couples localized eigenstates and, potentially, enables
spreading and destruction of Anderson localization due to nonintegrability,
chaos and decoherence. The spreading process is characterized by universal
subdiffusive laws due to nonlinear diffusion. We review extensive computational
studies for one- and two-dimensional systems with tunable nonlinearity power.
We also briefly discuss extensions to other cases where the linear wave
equation features localization: Aubry-Andre localization with quasiperiodic
potentials, Wannier-Stark localization with dc fields, and dynamical
localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
Technological Devices in the Archives: A Policy Analysis
Doing research in the archive is the cornerstone of humanities scholarship.
Various archives institute policies regarding the use of technological
devices, such as mobile phones, laptops, and cameras in their reading rooms.
Such policies directly affect the scholars as the devices mediate the nature of
their interaction with the source materials in terms of capturing, organizing,
note taking, and record keeping for future use of found materials. In this paper,
we present our analysis of the policies of thirty archives regarding the use of
technology in their reading rooms. This policy analysis, along with data from
interviews of scholars and archivists, is intended to serve as a basis for developing
mobile applications for assisting scholars in their research activities. In this
paper we introduce an early prototype of such a mobile application—
AMTracker.Informatio
Photoproduction of mesons in nuclei at GeV energies
In a transport model that combines initial state interactions of the photon
with final state interactions of the produced particles we present a
calculation of inclusive photoproduction of mesons in nuclei in the energy
range from 1 to 7 GeV. We give predictions for the photoproduction cross
sections of pions, etas, kaons, antikaons, and invariant mass
spectra in ^{12}C and ^{208}Pb. The effects of nuclear shadowing and final
state interaction of the produced particles are discussed in detail.Comment: Text added in summary in general reliability of the method,
references updated. Phys. Rev. C (2000) in pres
Bcc He as a Coherent Quantum Solid
In this work we investigate implications of the quantum nature of bcc %
He. We show that it is a unique solid phase with both a lattice structure and
an Off-Diagonal Long Range Order of coherently oscillating local electric
dipole moments. These dipoles arise from the local motion of the atoms in the
crystal potential well, and oscillate in synchrony to reduce the dipolar
interaction energy. The dipolar ground-state is therefore found to be a
coherent state with a well defined global phase and a three-component complex
order parameter. The condensation energy of the dipoles in the bcc phase
stabilizes it over the hcp phase at finite temperatures. We further show that
there can be fermionic excitations of this ground-state and predict that they
form an optical-like branch in the (110) direction. A comparison with
'super-solid' models is also discussed.Comment: 12 pages, 8 figure
Testing quantum correlations in a confined atomic cloud by scattering fast atoms
We suggest measuring one-particle density matrix of a trapped ultracold
atomic cloud by scattering fast atoms in a pure momentum state off the cloud.
The lowest-order probability of the inelastic process, resulting in a pair of
outcoming fast atoms for each incoming one, turns out to be given by a Fourier
transform of the density matrix. Accordingly, important information about
quantum correlations can be deduced directly from the differential scattering
cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR
Effect of sedimentary heterogeneities in the sealing formation on predictive analysis of geological CO<sub>2</sub> storage
Numerical models of geologic carbon sequestration (GCS) in saline aquifers use multiphase fluid flow-characteristic curves (relative permeability and capillary pressure) to represent the interactions of the non-wetting CO2 and the wetting brine. Relative permeability data for many sedimentary formations is very scarce, resulting in the utilisation of mathematical correlations to generate the fluid flow characteristics in these formations. The flow models are essential for the prediction of CO2 storage capacity and trapping mechanisms in the geological media. The observation of pressure dissipation across the storage and sealing formations is relevant for storage capacity and geomechanical analysis during CO2 injection.
This paper evaluates the relevance of representing relative permeability variations in the sealing formation when modelling geological CO2 sequestration processes. Here we concentrate on gradational changes in the lower part of the caprock, particularly how they affect pressure evolution within the entire sealing formation when duly represented by relative permeability functions.
The results demonstrate the importance of accounting for pore size variations in the mathematical model adopted to generate the characteristic curves for GCS analysis. Gradational changes at the base of the caprock influence the magnitude of pressure that propagates vertically into the caprock from the aquifer, especially at the critical zone (i.e. the region overlying the CO2 plume accumulating at the reservoir-seal interface). A higher degree of overpressure and CO2 storage capacity was observed at the base of caprocks that showed gradation. These results illustrate the need to obtain reliable relative permeability functions for GCS, beyond just permeability and porosity data. The study provides a formative principle for geomechanical simulations that study the possibility of pressure-induced caprock failure during CO2 sequestration
- …
