3,458 research outputs found
Applicability of the Fisher Equation to Bacterial Population Dynamics
The applicability of the Fisher equation, which combines diffusion with
logistic nonlinearity, to population dynamics of bacterial colonies is studied
with the help of explicit analytic solutions for the spatial distribution of a
stationary bacterial population under a static mask. The mask protects the
bacteria from ultraviolet light. The solution, which is in terms of Jacobian
elliptic functions, is used to provide a practical prescription to extract
Fisher equation parameters from observations and to decide on the validity of
the Fisher equation.Comment: 5 pages, 3 figs. include
Very long optical path-length from a compact multi-pass cell
The multiple-pass optical cell is an important tool for laser absorption
spectroscopy and its many applications. For most practical applications, such
as trace-gas detection, a compact and robust design is essential. Here we
report an investigation into a multi-pass cell design based on a pair of
cylindrical mirrors, with a particular focus on achieving very long optical
paths. We demonstrate a path-length of 50.31 m in a cell with 40 mm diameter
mirrors spaced 88.9 mm apart - a 3-fold increase over the previously reported
longest path-length obtained with this type of cell configuration. We
characterize the mechanical stability of the cell and describe the practical
conditions necessary to achieve very long path-lengths
The case for the development and use of "ecologically valid" measures of executive function in experimental and clinical neuropsychology
This article considers the scientific process whereby new and better clinical tests of executive function might be developed, and what form they might take. We argue that many of the traditional tests of executive function most commonly in use (e.g., the Wisconsin Card Sorting Test; Stroop) are adaptations of procedures that emerged almost coincidentally from conceptual and experimental frameworks far removed from those currently in favour, and that the prolongation of their use has been encouraged by a sustained period of concentration on “construct-driven” experimentation in neuropsychology. This resulted from the special theoretical demands made by the field of executive function, but was not a necessary consequence, and may not even have been a useful one. Whilst useful, these tests may not therefore be optimal for their purpose. We consider as an alternative approach a function-led development programme which in principle could yield tasks better suited to the concerns of the clinician because of the transparency afforded by increased “representativeness” and “generalisability.” We further argue that the requirement of such a programme to represent the interaction between the individual and situational context might also provide useful constraints for purely experimental investigations. We provide an example of such a programme with reference to the Multiple Errands and Six Element tests
An explicit height bound for the classical modular polynomial
For a prime m, let Phi_m be the classical modular polynomial, and let
h(Phi_m) denote its logarithmic height. By specializing a theorem of Cohen, we
prove that h(Phi_m) <= 6 m log m + 16 m + 14 sqrt m log m. As a corollary, we
find that h(Phi_m) <= 6 m log m + 18 m also holds. A table of h(Phi_m) values
is provided for m <= 3607.Comment: Minor correction to the constants in Theorem 1 and Corollary 9. To
appear in the Ramanujan Journal. 17 pages
Quantum interference effects in p-Si1−xGex quantum wells
Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field
Issues and Observations on Applications of the Constrained-Path Monte Carlo Method to Many-Fermion Systems
We report several important observations that underscore the distinctions
between the constrained-path Monte Carlo method and the continuum and lattice
versions of the fixed-node method. The main distinctions stem from the
differences in the state space in which the random walk occurs and in the
manner in which the random walkers are constrained. One consequence is that in
the constrained-path method the so-called mixed estimator for the energy is not
an upper bound to the exact energy, as previously claimed. Several ways of
producing an energy upper bound are given, and relevant methodological aspects
are illustrated with simple examples.Comment: 28 pages, REVTEX, 5 ps figure
Radiative charge transfer lifetime of the excited state of (NaCa)
New experiments were proposed recently to investigate the regime of cold
atomic and molecular ion-atom collision processes in a special hybrid
neutral-atom--ion trap under high vacuum conditions. The collisional cooling of
laser pre-cooled Ca ions by ultracold Na atoms is being studied. Modeling
this process requires knowledge of the radiative lifetime of the excited
singlet A state of the (NaCa) molecular system. We calculate
the rate coefficient for radiative charge transfer using a semiclassical
approach. The dipole radial matrix elements between the ground and the excited
states, and the potential curves were calculated using Complete Active Space
Self-Consistent field and M\"oller-Plesset second order perturbation theory
(CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical
charge transfer rate coefficient was averaged over a thermal Maxwellian
distribution. In addition we also present elastic collision cross sections and
the spin-exchange cross section. The rate coefficient for charge transfer was
found to be cm/sec, while those for the elastic and
spin-exchange cross sections were found to be several orders of magnitude
higher ( cm/sec and cm/sec,
respectively). This confirms our assumption that the milli-Kelvin regime of
collisional cooling of calcium ions by sodium atoms is favorable with the
respect to low loss of calcium ions due to the charge transfer.Comment: 4 pages, 5 figures; v.2 - conceptual change
Rendezvous of Heterogeneous Mobile Agents in Edge-weighted Networks
We introduce a variant of the deterministic rendezvous problem for a pair of
heterogeneous agents operating in an undirected graph, which differ in the time
they require to traverse particular edges of the graph. Each agent knows the
complete topology of the graph and the initial positions of both agents. The
agent also knows its own traversal times for all of the edges of the graph, but
is unaware of the corresponding traversal times for the other agent. The goal
of the agents is to meet on an edge or a node of the graph. In this scenario,
we study the time required by the agents to meet, compared to the meeting time
in the offline scenario in which the agents have complete knowledge
about each others speed characteristics. When no additional assumptions are
made, we show that rendezvous in our model can be achieved after time in a -node graph, and that such time is essentially in some cases
the best possible. However, we prove that the rendezvous time can be reduced to
when the agents are allowed to exchange bits of
information at the start of the rendezvous process. We then show that under
some natural assumption about the traversal times of edges, the hardness of the
heterogeneous rendezvous problem can be substantially decreased, both in terms
of time required for rendezvous without communication, and the communication
complexity of achieving rendezvous in time
Vibrational properties of amorphous silicon from tight-binding O(N) calculation
We present an O(N) algorithm to study the vibrational properties of amorphous
silicon within the framework of tight-binding approach. The dynamical matrix
elements have been evaluated numerically in the harmonic approximation
exploiting the short-range nature of the density matrix to calculate the
vibrational density of states which is then compared with the same obtained
from a standard O() algorithm. For the purpose of illustration, an
1000-atom model is studied to calculate the localization properties of the
vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references;
accepted in Phys. Rev.
- …
