10,317 research outputs found

    Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-like Universe

    Full text link
    We expose the scenarios of primordial baryon-photon plasma evolution within the framework of the Milne-like universe models. Recently, such models find a second wind and promise an inflation-free solution of a lot of cosmological puzzles including the cosmological constant one. Metric tensor perturbations are considered using the five-vectors theory of gravity admitting the Friedmann equation satisfied up to some constant. The Cosmic Microwave Background (CMB) spectrum is calculated qualitatively.Comment: 20 page

    Asthma Prevalence, Knowledge, and Perceptions among Secondary School Pupils in Rural and Urban Costal Districts in Tanzania.

    Get PDF
    Asthma is a common chronic disease of childhood that is associated with significant morbidity and mortality. We aimed to estimate the prevalence of asthma among secondary school pupils in urban and rural areas of coast districts of Tanzania. The study also aimed to describe pupils' perception towards asthma, and to assess their knowledge on symptoms, triggers, and treatment of asthma. A total of 610 pupils from Ilala district and 619 pupils from Bagamoyo district formed the urban and rural groups, respectively. Using a modified International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire, a history of "diagnosed" asthma or the presence of a wheeze in the previous 12 months was obtained from all the studied pupils, along with documentation of their perceptions regarding asthma. Pupils without asthma or wheeze in the prior 12 months were subsequently selected and underwent a free running exercise testing. A >= 20% decrease in the post-exercise Peak Expiratory Flow Rate (PEFR) values was the criterion for diagnosing exercise-induced asthma. The mean age of participants was 16.8 (+/-1.8) years. The prevalence of wheeze in the past 12 months was 12.1% in Bagamoyo district and 23.1% in Ilala district (p < 0.001). Self-reported asthma was found in 17.6% and 6.4% of pupils in Ilala and Bagamoyo districts, respectively (p < 0.001). The prevalence of exercise-induced asthma was 2.4% in Bagamoyo, and 26.3% in Ilala (P < 0.002). In both districts, most information on asthma came from parents, and there was variation in symptoms and triggers of asthma reported by the pupils. Non-asthmatic pupils feared sleeping, playing, and eating with their asthmatic peers. The prevalence rates of self-reported asthma, wheezing in the past 12 months, and exercise-induced asthma were significantly higher among urban than rural pupils. Although bronchial asthma is a common disease, pupils' perceptions about asthma were associated with fear of contact with their asthmatic peers in both rural and urban schools

    Coherent spinor dynamics in a spin-1 Bose condensate

    Full text link
    Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a degenerate Fermi gas, the phase space accessible to low energy collisions is so restricted that collisions be-come coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be -1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.Comment: 19 pages, 3 figure

    Blow-up profile of rotating 2D focusing Bose gases

    Full text link
    We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation Ω\Omega. First we study the behavior of the ground state when the coupling constant approaches a_a\_* , the critical strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of Ω\Omega, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141--156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for NN bosons, interacting with a potential rescaled in the mean-field manner a_NN2β1w(Nβx),with--a\_N N^{2\beta--1} w(N^{\beta} x), with wapositivefunctionsuchthat a positive function such that \int\_{\mathbb{R}^2} w(x) dx = 1.Assumingthat. Assuming that \beta < 1/2andthat and that a\_N \to a\_*sufficientlyslowly,weprovethatthemanybodysystemisfullycondensedontheGrossPitaevskiigroundstateinthelimit sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit N \to \infty$

    Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences

    Get PDF
    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Disorder Effects on Exciton-Polariton Condensates

    Full text link
    The impact of a random disorder potential on the dynamical properties of Bose Einstein condensates is a very wide research field. In microcavities, these studies are even more crucial than in the condensates of cold atoms, since random disorder is naturally present in the semiconductor structures. In this chapter, we consider a stable condensate, defined by a chemical potential, propagating in a random disorder potential, like a liquid flowing through a capillary. We analyze the interplay between the kinetic energy, the localization energy, and the interaction between particles in 1D and 2D polariton condensates. The finite life time of polaritons is taken into account as well. In the first part, we remind the results of [G. Malpuech et al. Phys. Rev. Lett. 98, 206402 (2007).] where we considered the case of a static condensate. In that case, the condensate forms either a glassy insulating phase at low polariton density (strong localization), or a superfluid phase above the percolation threshold. We also show the calculation of the first order spatial coherence of the condensate versus the condensate density. In the second part, we consider the case of a propagating non-interacting condensate which is always localized because of Anderson localization. The localization length is calculated in the Born approximation. The impact of the finite polariton life time is taken into account as well. In the last section we consider the case of a propagating interacting condensate where the three regimes of strong localization, Anderson localization, and superfluid behavior are accessible. The localization length is calculated versus the system parameters. The localization length is strongly modified with respect to the non-interacting case. It is infinite in the superfluid regime whereas it is strongly reduced if the fluid flows with a supersonic velocity.Comment: chapter for a book "Exciton Polaritons in Microcavities: New Frontiers" by Springer (2012), the original publication is available at http://www.springerlink.co
    corecore