2,969 research outputs found
Bogoliubov Coefficients of 2D Charged Black Holes
We exactly calculate the thermal distribution and temperature of Hawking
radiation for a two-dimensional charged dilatonic black hole after it has
settled down to an "equilibrium" state. The calculation is carried out using
the Bogoliubov coefficients. The background of the process is furnished by a
preexisting black hole and not by collapsing matter as considered by Giddings
and Nelson for the case of a Schwarzschild black hole. Furthermore, the
vanishing of the temperature and/or the Hawking radiation in the extremal case
is obtained as a regular limit of the general case.Comment: 9 pages, 1 eps figur
Towards robust aero-thermodynamic predictions for re-usable single-stage to orbit vehicles
Re-usable single stage to orbit launch vehicles promise to reduce the cost of access to space, but their success will be particularly reliant on accurate and robust modelling of their aero-thermodynamic characteristics. For preliminary design and optimization studies, relatively simple numerical prediction techniques must perforce be used, but it is important that the uncertainty that is inherent in the predictions of these models be understood. Predictions of surface pressure and heat transfer obtained using a new reduced-order model that is based on the Newtonian flow assumption and the Reynolds analogy for heating are compared against those of a more physically-sophisticated Direct Simulation Monte Carlo method in order to determine the ability of the model to capture the aero-thermodynamics of vehicles with very complex configuration even when run at low enough resolution to be practical in the context of design optimization studies. Attention is focused on the high-altitude regime where lifting re-usable Single-Stage to Orbit configurations will experience their greatest thermal load during re-entry, but where non-continuum effects within the gas of the atmosphere might be important. It is shown that the reduced-order model is capable of reproducing the results of the more complex Monte Carlo formalism with surprising fidelity, but that residual uncertainties exist, particularly in the behaviour of the heating models and in the applicability of the continuum assumption given the onset of finite slip velocity on surface of vehicle. The results suggest thus that, if used with care, reduced-order models such as those described here can be used very effectively in the design and optimization of space-access vehicles with very complex configuration, as long as their predictions are adequately supported by the use of more sophisticated computational techniques
First-principles study of nucleation, growth, and interface structure of Fe/GaAs
We use density-functional theory to describe the initial stages of Fe film
growth on GaAs(001), focusing on the interplay between chemistry and magnetism
at the interface. Four features appear to be generic: (1) At submonolayer
coverages, a strong chemical interaction between Fe and substrate atoms leads
to substitutional adsorption and intermixing. (2) For films of several
monolayers and more, atomically abrupt interfaces are energetically favored.
(3) For Fe films over a range of thicknesses, both Ga- and As-adlayers
dramatically reduce the formation energies of the films, suggesting a
surfactant-like action. (4) During the first few monolayers of growth, Ga or As
atoms are likely to be liberated from the interface and diffuse to the Fe film
surface. Magnetism plays an important auxiliary role for these processes, even
in the dilute limit of atomic adsorption. Most of the films exhibit
ferromagnetic order even at half-monolayer coverage, while certain
adlayer-capped films show a slight preference for antiferromagnetic order.Comment: 11 two-column pages, 12 figures, to appear in Phys. Rev.
Dark Energy and Extending the Geodesic Equations of Motion: Its Construction and Experimental Constraints
With the discovery of Dark Energy, , there is now a universal
length scale, , associated with the
universe that allows for an extension of the geodesic equations of motion. In
this paper, we will study a specific class of such extensions, and show that
contrary to expectations, they are not automatically ruled out by either
theoretical considerations or experimental constraints. In particular, we show
that while these extensions affect the motion of massive particles, the motion
of massless particles are not changed; such phenomena as gravitational lensing
remain unchanged. We also show that these extensions do not violate the
equivalence principal, and that because Mpc, a
specific choice of this extension can be made so that effects of this extension
are not be measurable either from terrestrial experiments, or through
observations of the motion of solar system bodies. A lower bound for the only
parameter used in this extension is set.Comment: 19 pages. This is the published version of the first half of
arXiv:0711.3124v2 with corrections include
A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator
We evaluate from first principles the self-consistent Hartree-Fock energies
for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott
insulator on a two-dimensional square lattice. We find that nearest-neighbor
Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton
pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate
coupling 3 < U/t <8. This stabilization is mediated through the generation of
``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes
cloaked by a meron-vortex in the spin-flux AFM background are charged bosons.
Our static Hartree-Fock calculations provide an upper bound on the energy of a
finite density of charged vortices. This upper bound is lower than the energy
of the corresponding charged stripe configurations. A finite density of charge
carrying vortices is shown to produce a large number of unoccupied electronic
levels in the Mott-Hubbard charge transfer gap. These levels lead to
significant band tailing and a broad mid-infrared band in the optical
absorption spectrum as observed experimentally. At very low doping (below 0.05)
the doping charges create extremely tightly bound meron-antimeron pairs or even
isolated conventional spin-polarons, whereas for very high doping (above 0.4)
the spin background itself becomes unstable to formation of a conventional
Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our
results point to the predominance of a quantum liquid of charged, bosonic,
vortex solitons at intermediate coupling and intermediate doping
concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some
figure
Higher-order mutual coherence of optical and matter waves
We use an operational approach to discuss ways to measure the higher-order
cross-correlations between optical and matter-wave fields. We pay particular
attention to the fact that atomic fields actually consist of composite
particles that can easily be separated into their basic constituents by a
detection process such as photoionization. In the case of bosonic fields, that
we specifically consider here, this leads to the appearance in the detection
signal of exchange contributions due to both the composite bosonic field and
its individual fermionic constituents. We also show how time-gated counting
schemes allow to isolate specific contributions to the signal, in particular
involving different orderings of the Schr\"odinger and Maxwell fields.Comment: 11 pages, 2 figure
Path Integral Description of a Semiclassical Su-Schrieffer-Heeger Model
The electron motion along a chain is described by a continuum version of the
Su-Schrieffer-Heeger Hamiltonian in which phonon fields and electronic
coordinates are mapped onto the time scale. The path integral formalism allows
us to derive the non local source action for the particle interacting with the
oscillators bath. The method can be applied for any value of the {\it e-ph}
coupling. The path integral dependence on the model parameters has been
analysed by computing the partition function and some thermodynamical
properties from up to room temperature. A peculiar upturn in the low
temperature {\it heat capacity over temperature} ratio (pointing to a glassy
like behavior) has been ascribed to the time dependent electronic hopping along
the chain
Statistical Theory for Incoherent Light Propagation in Nonlinear Media
A novel statistical approach based on the Wigner transform is proposed for
the description of partially incoherent optical wave dynamics in nonlinear
media. An evolution equation for the Wigner transform is derived from a
nonlinear Schrodinger equation with arbitrary nonlinearity. It is shown that
random phase fluctuations of an incoherent plane wave lead to a Landau-like
damping effect, which can stabilize the modulational instability. In the limit
of the geometrical optics approximation, incoherent, localized, and stationary
wave-fields are shown to exist for a wide class of nonlinear media.Comment: 4 pages, REVTeX4. Submitted to Physical Review E. Revised manuscrip
Developmental contexts and features of elite academy football players: Coach and player perspectives
Player profiling can reap many benefits; through reflective coach-athlete dialogue that produces a profile the athlete has a raised awareness of their own development, while the coach has an opportunity to understand the athlete's viewpoint. In this study, we explored how coaches and players perceived the development features of an elite academy footballer and the contexts in which these features are revealed, in order to develop a player profile to be used for mentoring players. Using a Delphi polling technique, coaches and players experienced a number of 'rounds' of expressing their opinions regarding player development contexts and features, ultimately reduced into a consensus. Players and coaches had differing priorities on the key contexts of player development. These contexts, when they reflect the consensus between players and coaches were heavily dominated by ability within the game and training. Personal, social, school, and lifestyle contexts featured less prominently. Although 'discipline' was frequently mentioned as an important player development feature, coaches and players disagreed on the importance of 'training'
- …
