3,523 research outputs found
Numerical Hermitian Yang-Mills Connections and Kahler Cone Substructure
We further develop the numerical algorithm for computing the gauge connection
of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In
particular, recent work on the generalized Donaldson algorithm is extended to
bundles with Kahler cone substructure on manifolds with h^{1,1}>1. Since the
computation depends only on a one-dimensional ray in the Kahler moduli space,
it can probe slope-stability regardless of the size of h^{1,1}. Suitably
normalized error measures are introduced to quantitatively compare results for
different directions in Kahler moduli space. A significantly improved numerical
integration procedure based on adaptive refinements is described and
implemented. Finally, an efficient numerical check is proposed for determining
whether or not a vector bundle is slope-stable without computing its full
connection.Comment: 38 pages, 10 figure
Heterotic Line Bundle Standard Models
In a previous publication, arXiv:1106.4804, we have found 200 models from
heterotic Calabi-Yau compactifications with line bundles, which lead to
standard models after taking appropriate quotients by a discrete symmetry and
introducing Wilson lines. In this paper, we construct the resulting standard
models explicitly, compute their spectrum including Higgs multiplets, and
analyze some of their basic properties. After removing redundancies we find
about 400 downstairs models, each with the precise matter spectrum of the
supersymmetric standard model, with one, two or three pairs of Higgs doublets
and no exotics of any kind. In addition to the standard model gauge group, up
to four Green-Schwarz anomalous U(1) symmetries are present in these models,
which constrain the allowed operators in the four-dimensional effective
supergravity. The vector bosons associated to these anomalous U(1) symmetries
are massive. We explicitly compute the spectrum of allowed operators for each
model and present the results, together with the defining data of the models,
in a database of standard models accessible at
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html.
Based on these results we analyze elementary phenomenological properties. For
example, for about 200 models all dimension four and five proton decay
violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure
Quiver Structure of Heterotic Moduli
We analyse the vector bundle moduli arising from generic heterotic
compactifications from the point of view of quiver representations. Phenomena
such as stability walls, crossing between chambers of supersymmetry, splitting
of non-Abelian bundles and dynamic generation of D-terms are succinctly encoded
into finite quivers. By studying the Poincar\'e polynomial of the quiver moduli
space using the Reineke formula, we can learn about such useful concepts as
Donaldson-Thomas invariants, instanton transitions and supersymmetry breaking.Comment: 38 pages, 5 figures, 1 tabl
Heterotic domain wall solutions and SU(3) structure manifolds
We examine compactifications of heterotic string theory on manifolds with
SU(3) structure. In particular, we study N = 1/2 domain wall solutions which
correspond to the perturbative vacua of the 4D, N =1 supersymmetric theories
associated to these compactifications. We extend work which has appeared
previously in the literature in two important regards. Firstly, we include two
additional fluxes which have been, heretofore, omitted in the general analysis
of this situation. This allows for solutions with more general torsion classes
than have previously been found. Secondly, we provide explicit solutions for
the fluxes as a function of the torsion classes. These solutions are
particularly useful in deciding whether equations such as the Bianchi
identities can be solved, in addition to the Killing spinor equations
themselves. Our work can be used to straightforwardly decide whether any given
SU(3) structure on a six-dimensional manifold is associated with a solution to
heterotic string theory. To illustrate how to use these results, we discuss a
number of examples taken from the literature.Comment: 34 pages, minor corrections in second versio
Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories
A numerical algorithm is presented for explicitly computing the gauge
connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds.
To illustrate this algorithm, we calculate the connections on stable monad
bundles defined on the K3 twofold and Quintic threefold. An error measure is
introduced to determine how closely our algorithmic connection approximates a
solution to the Hermitian Yang-Mills equations. We then extend our results by
investigating the behavior of non slope-stable bundles. In a variety of
examples, it is shown that the failure of these bundles to satisfy the
Hermitian Yang-Mills equations, including field-strength singularities, can be
accurately reproduced numerically. These results make it possible to
numerically determine whether or not a vector bundle is slope-stable, thus
providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in
version 2
Heterotic Model Building: 16 Special Manifolds
We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list
Yukawa Textures From Heterotic Stability Walls
A holomorphic vector bundle on a Calabi-Yau threefold, X, with h^{1,1}(X)>1
can have regions of its Kahler cone where it is slope-stable, that is, where
the four-dimensional theory is N=1 supersymmetric, bounded by "walls of
stability". On these walls the bundle becomes poly-stable, decomposing into a
direct sum, and the low energy gauge group is enhanced by at least one
anomalous U(1) gauge factor. In this paper, we show that these additional
symmetries can strongly constrain the superpotential in the stable region,
leading to non-trivial textures of Yukawa interactions and restrictions on
allowed masses for vector-like pairs of matter multiplets. The Yukawa textures
exhibit a hierarchy; large couplings arise on the stability wall and some
suppressed interactions "grow back" off the wall, where the extended U(1)
symmetries are spontaneously broken. A number of explicit examples are
presented involving both one and two stability walls, with different
decompositions of the bundle structure group. A three family standard-like
model with no vector-like pairs is given as an example of a class of SU(4)
bundles that has a naturally heavy third quark/lepton family. Finally, we
present the complete set of Yukawa textures that can arise for any holomorphic
bundle with one stability wall where the structure group breaks into two
factors.Comment: 53 pages, 4 figures and 13 table
Three Generations on the Quintic Quotient
A three-generation SU(5) GUT, that is 3x(10+5bar) and a single 5-5bar pair,
is constructed by compactification of the E_8 heterotic string. The base
manifold is the Z_5 x Z_5-quotient of the quintic, and the vector bundle is the
quotient of a positive monad. The group action on the monad and its
bundle-valued cohomology is discussed in detail, including topological
restrictions on the existence of equivariant structures. This model and a
single Z_5 quotient are the complete list of three generation quotients of
positive monads on the quintic.Comment: 19 pages, LaTeX. v2: section on anomaly cancellation adde
A Global SU(5) F-theory model with Wilson line breaking
We engineer compact SU(5) Grand Unified Theories in F-theory in which
GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge
field is flat, these models avoid the high scale threshold corrections
associated with hypercharge flux. Along the way, we exemplify the
`local-to-global' approach in F-theory model building and demonstrate how the
Tate divisor formalism can be used to address several challenges of extending
local models to global ones. These include in particular the construction of
G-fluxes that extend non-inherited bundles and the engineering of U(1)
symmetries. We go beyond chirality computations and determine the precise
(charged) massless spectrum, finding exactly three families of quarks and
leptons but excessive doublet and/or triplet pairs in the Higgs sector
(depending on the example) and vector-like exotics descending from the adjoint
of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector
without an obvious symmetry to protect them may shed light on new solutions to
the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor
correction
On Free Quotients of Complete Intersection Calabi-Yau Manifolds
In order to find novel examples of non-simply connected Calabi-Yau
threefolds, free quotients of complete intersections in products of projective
spaces are classified by means of a computer search. More precisely, all
automorphisms of the product of projective spaces that descend to a free action
on the Calabi-Yau manifold are identified.Comment: 39 pages, 3 tables, LaTe
- …
