5,673 research outputs found
Fabrication process development of SiC/superalloy composite sheet for exhaust system components
A chemical compatibility study was conducted between SiC filament and the following P/M matrix alloys: Waspaloy, Hastelloy-X, NiCrAlY, Ha-188, S-57, FeCrAlY, and Incoloy 800. None of the couples demonstrated sufficient chemical compatibility to withstand the minimum HIP consolidation temperatures (996 C) or intended application temperature of the composite (982 C). However, Waspaloy, Haynes 188, and Hastelloy-X were the least reactive with SiC of the candidate alloys. Chemical vapor deposited tungsten was shown to be an effective diffusion barrier between the superalloy matrix and SiC filament providing a defect-free coating of sufficient thickness. However, the coating breaks down when the tungsten is converted into intermetallic compounds by interdiffusion with matrix constituents. Waspaloy was demonstrated to be the most effective matrix alloy candidate in contact with the CVD tungsten barrier because of its relatively low growth rate constant of the intermediate compound and the lack of formation of Kirkendall voids at the matrix-barrier interface. Fabrication methods were developed for producing panels of uniaxial and angle ply composites utilizing CVD tungsten coated filament
Improved -Boundedness for Integral -Spherical Maximal Functions
We improve the range of -boundedness of the integral
-spherical maximal functions introduced by Magyar. The previously best known
bounds for the full -spherical maximal function require the dimension to
grow at least cubicly with the degree . Combining ideas from our prior work
with recent advances in the theory of Weyl sums by Bourgain, Demeter, and Guth
and by Wooley, we reduce this cubic bound to a quadratic one. As an
application, we deduce improved bounds in the ergodic Waring--Goldbach problem.Comment: 18 pages. Published in Discrete Analysis Journal on 29 May 201
<sup>14</sup>C AMS at SUERC: improving QA data from the 5 MV tandem AMS and 250 kV SSAMS
In 2003, a National Electrostatics Corporation (NEC) 5MV tandem accelerator mass spectrometer was installed at SUERC, providing the radiocarbon laboratory with 14C measurements to 4–5‰ repeatability. In 2007, a 250kV single-stage accelerator mass spectrometer (SSAMS) was added to provide additional 14C capability and is now the preferred system for 14C analysis. Changes to the technology and to our operations are evident in our copious quality assurance data: typically, we now use the 134-position MC-SNICS source, which is filled to capacity. Measurement of standards shows that spectrometer running without the complication of on-line δ13C evaluation is a good operational compromise. Currently, 3‰ 14C/13C measurements are routinely achieved for samples up to nearly 3 half-lives old by consistent sample preparation and an automated data acquisition algorithm with sample random access for measurement repeats. Background and known-age standard data are presented for the period 2003–2008 for the 5MV system and 2007–2008 for the SSAMS, to demonstrate the improvements in data quality
Introduction to dynamical horizons in numerical relativity
This paper presents a quasi-local method of studying the physics of dynamical
black holes in numerical simulations. This is done within the dynamical horizon
framework, which extends the earlier work on isolated horizons to
time-dependent situations. In particular: (i) We locate various kinds of
marginal surfaces and study their time evolution. An important ingredient is
the calculation of the signature of the horizon, which can be either spacelike,
timelike, or null. (ii) We generalize the calculation of the black hole mass
and angular momentum, which were previously defined for axisymmetric isolated
horizons to dynamical situations. (iii) We calculate the source multipole
moments of the black hole which can be used to verify that the black hole
settles down to a Kerr solution. (iv) We also study the fluxes of energy
crossing the horizon, which describes how a black hole grows as it accretes
matter and/or radiation.
We describe our numerical implementation of these concepts and apply them to
three specific test cases, namely, the axisymmetric head-on collision of two
black holes, the axisymmetric collapse of a neutron star, and a
non-axisymmetric black hole collision with non-zero initial orbital angular
momentum.Comment: 20 pages, 16 figures, revtex4. Several smaller changes, some didactic
content shortene
Ecological Effects of Fear: How Spatiotemporal Heterogeneity in Predation Risk Influences Mule Deer Access to Forage in a Sky‐Island System
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands
Extrinsic Curvature and the Einstein Constraints
The Einstein initial-value equations in the extrinsic curvature (Hamiltonian)
representation and conformal thin sandwich (Lagrangian) representation are
brought into complete conformity by the use of a decomposition of symmetric
tensors which involves a weight function. In stationary spacetimes, there is a
natural choice of the weight function such that the transverse traceless part
of the extrinsic curvature (or canonical momentum) vanishes.Comment: 8 pages, no figures; added new section; significant polishing of tex
Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity
We study the stability properties of the standard ADM formulation of the 3+1
evolution equations of general relativity through linear perturbations of flat
spacetime. We focus attention on modes with zero speed of propagation and
conjecture that they are responsible for instabilities encountered in numerical
evolutions of the ADM formulation. These zero speed modes are of two kinds:
pure gauge modes and constraint violating modes. We show how the decoupling of
the gauge by a conformal rescaling can eliminate the problem with the gauge
modes. The zero speed constraint violating modes can be dealt with by using the
momentum constraints to give them a finite speed of propagation. This analysis
sheds some light on the question of why some recent reformulations of the 3+1
evolution equations have better stability properties than the standard ADM
formulation.Comment: 15 pages, 9 figures. Added a new section, plus incorporated many
comments made by refere
Cigarette Smoking Increases Risk of Barrett’s Esophagus:An Analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium
- …
