839 research outputs found

    Facebook som ett social media marknadsförings verktyg : En undersökning om Facebooks inverkan inom digital marknadsföring

    Get PDF
    Syftet med detta arbete är att redogöra hur företag inom handelsbranschen kan utnyttja Facebook som marknadsförings kanal. I arbetet fokuseras det på vilken sorts reklam och kampanj som är effektivast. Arbetet är begränsat till endast Facebook eftersom det finns många olika sociala medier, varav Facebook är den största. Som metod har jag valt att använda observations undersökning och intervju med experter. Som undersöknings objektiv valdes företagen Gigantti Oy och Power. Problem som flera företag har är att de inte är medvetna om vilka tekniska kunskaper som behövs för att nå maximal synlighet på Facebook. Teorin går ytligt igenom hur digital marknadsföring fungerar idag. Teorin går sedan djupare in på Facebooks tekniska sidor. Det förklaras vilka verktyg ett företag automatiskt blir tilldelat av Facebook. Resultaten av undersökning visade att både att tävlingar, kampanjer och speciella erbjudanden är de effektivaste inläggen eftersom de gör kunderna engagerade och når mest människor

    Kontsevich quantization and invariant distributions on Lie groups

    Full text link
    We study Kontsevich's deformation quantization for the dual of a finite-dimensional real Lie algebra (or superalgebra) g. In this case the Kontsevich star-product defines a new convolution on S(g), regarded as the space of distributions supported at 0 in g. For p in S(g), we show that the convolution operator f->f*p is a differential operator with analytic germ. We use this fact to prove a conjecture of Kashiwara and Vergne on invariant distributions on a Lie group. This yields a new proof of Duflo's result on local solvability of bi-invariant differential operators on a Lie group. Moreover, this new proof extends to Lie supergroups.Comment: 22 pages, LaTeX. This is an expanded version of math.QA/990506

    La bibliothèque du mathématicien

    Get PDF
    Où et sur quels supports les mathématiques se livrent-elles au public, spécialisé ou non ? Si Internet a modifié la donne, ce domaine reste – malgré bien des difficultés – davantage attaché à l’édition traditionnelle que l’on aurait pu le penser

    Clustering Financial Time Series: How Long is Enough?

    Get PDF
    Researchers have used from 30 days to several years of daily returns as source data for clustering financial time series based on their correlations. This paper sets up a statistical framework to study the validity of such practices. We first show that clustering correlated random variables from their observed values is statistically consistent. Then, we also give a first empirical answer to the much debated question: How long should the time series be? If too short, the clusters found can be spurious; if too long, dynamics can be smoothed out.Comment: Accepted at IJCAI 201

    Converging Technologies - Shaping the Future of European Societies

    Get PDF
    The European Commission and Member States are called upon to recognise the novel potential of Converging Technologies (CTs) to advance the Lisbon Agenda. Wise investment in CTs stimulates science and technology research, strengthens economic competitiveness, and addresses the needs of European societies and their citizens. Preparatory action should be taken to implement CT as a thematic research priority, to develop Converging Technologies for the European Knowledge Society (CTEKS) as a specifically European approach to CTs, and to establish a CTEKS research communit

    Kontsevich quantization and invariant distributions on Lie groups

    Get PDF
    We study Kontsevich's deformation quantization for the dual of a finite-dimensional real Lie algebra (or superalgebra) g . In this case the Kontsevich ★-product defines a new convolution on  S( g) , regarded as the space of distributions supported at 0∈ g . For p∈S( g) , we show that the convolution operator f↦ p★ f is a differential operator with analytic germ. We use this fact to prove a conjecture of Kashiwara and Vergne on invariant distributions on a Lie group  G. This implies local solvability of bi-invariant differential operators on a Lie supergroup. In the special case of Lie groups, we get a new proof Duflo's theorem. Nous étudions la quantification par déformation de Kontsevich du dual d'une algèbre (ou superalgèbre) de Lie réelle de dimension finie g . Dans ce cas, le ★-produit de Kontsevich définit une nouvelle convolution sur S( g) , vu comme l'espace des distributions de support le point 0∈ g . Pour p∈S( g) , nous démontrons que l'opérateur de convolution f↦ p★ f est un opérateur différentiel de germe analytique. Nous utilisons ce fait pour prouver une conjecture de Kashiwara et Vergne sur les distributions invariantes sur un groupe de Lie G. Ceci implique la résolubilité locale des opérateurs différentiels bi-invariants sur un super-groupe de Lie G. Dans le cas particulier des groups, nous obtenons ainsi une nouvelle démonstration du théorème de Duflo

    Sexual Orientation, Ideology, and Philosophical Method

    Get PDF
    Here, I examine the epistemic relation between beliefs about the nature of sexual orientation (e.g., beliefs concerning whether orientation is dispositional) and beliefs about the taxonomy of orientation categories (e.g., beliefs concerning whether polyamorous is an orientation category). Current philosophical research gives epistemic priority to the former class of beliefs, such that beliefs about the taxonomy of orientation categories tend to be jettisoned or revised in cases of conflict with beliefs about the nature of sexual orientation. Yet, considering the influence of ideology on beliefs about socially significant phenomena, I argue for an epistemic reversal
    corecore