839 research outputs found
Facebook som ett social media marknadsförings verktyg : En undersökning om Facebooks inverkan inom digital marknadsföring
Syftet med detta arbete är att redogöra hur företag inom handelsbranschen kan utnyttja
Facebook som marknadsförings kanal. I arbetet fokuseras det på vilken sorts reklam och
kampanj som är effektivast. Arbetet är begränsat till endast Facebook eftersom det finns
många olika sociala medier, varav Facebook är den största. Som metod har jag valt att
använda observations undersökning och intervju med experter. Som undersöknings objektiv
valdes företagen Gigantti Oy och Power. Problem som flera företag har är att de
inte är medvetna om vilka tekniska kunskaper som behövs för att nå maximal synlighet
på Facebook. Teorin går ytligt igenom hur digital marknadsföring fungerar idag. Teorin
går sedan djupare in på Facebooks tekniska sidor. Det förklaras vilka verktyg ett företag
automatiskt blir tilldelat av Facebook. Resultaten av undersökning visade att både att tävlingar,
kampanjer och speciella erbjudanden är de effektivaste inläggen eftersom de gör
kunderna engagerade och når mest människor
Kontsevich quantization and invariant distributions on Lie groups
We study Kontsevich's deformation quantization for the dual of a
finite-dimensional real Lie algebra (or superalgebra) g. In this case the
Kontsevich star-product defines a new convolution on S(g), regarded as the
space of distributions supported at 0 in g. For p in S(g), we show that the
convolution operator f->f*p is a differential operator with analytic germ. We
use this fact to prove a conjecture of Kashiwara and Vergne on invariant
distributions on a Lie group. This yields a new proof of Duflo's result on
local solvability of bi-invariant differential operators on a Lie group.
Moreover, this new proof extends to Lie supergroups.Comment: 22 pages, LaTeX. This is an expanded version of math.QA/990506
La bibliothèque du mathématicien
Où et sur quels supports les mathématiques se livrent-elles au public, spécialisé ou non ? Si Internet a modifié la donne, ce domaine reste – malgré bien des difficultés – davantage attaché à l’édition traditionnelle que l’on aurait pu le penser
Clustering Financial Time Series: How Long is Enough?
Researchers have used from 30 days to several years of daily returns as
source data for clustering financial time series based on their correlations.
This paper sets up a statistical framework to study the validity of such
practices. We first show that clustering correlated random variables from their
observed values is statistically consistent. Then, we also give a first
empirical answer to the much debated question: How long should the time series
be? If too short, the clusters found can be spurious; if too long, dynamics can
be smoothed out.Comment: Accepted at IJCAI 201
Converging Technologies - Shaping the Future of European Societies
The European Commission and Member States are called upon to recognise the novel potential of Converging Technologies (CTs) to advance the Lisbon Agenda. Wise investment in CTs stimulates science and technology research, strengthens economic competitiveness, and addresses the needs of European societies and their citizens. Preparatory action should be taken to implement CT as a thematic research priority, to develop Converging Technologies for the European Knowledge Society (CTEKS) as a specifically European approach to CTs, and to establish a CTEKS research communit
Kontsevich quantization and invariant distributions on Lie groups
We study Kontsevich's deformation quantization for the dual of a finite-dimensional real Lie algebra (or superalgebra)
g
. In this case the Kontsevich ★-product defines a new convolution on
S(
g)
, regarded as the space of distributions supported at
0∈
g
. For
p∈S(
g)
, we show that the convolution operator
f↦
p★
f is a differential operator with
analytic germ.
We use this fact to prove a conjecture of Kashiwara and Vergne on invariant distributions on a Lie group
G. This implies local solvability of bi-invariant differential operators on a Lie supergroup. In the special case of Lie groups, we get a new proof Duflo's theorem.
Nous étudions la quantification par déformation de Kontsevich du dual d'une algèbre (ou superalgèbre) de Lie réelle de dimension finie
g
. Dans ce cas, le ★-produit de Kontsevich définit une nouvelle convolution sur
S(
g)
, vu comme l'espace des distributions de support le point
0∈
g
. Pour
p∈S(
g)
, nous démontrons que l'opérateur de convolution
f↦
p★
f est un opérateur différentiel de germe
analytique.
Nous utilisons ce fait pour prouver une conjecture de Kashiwara et Vergne sur les distributions invariantes sur un groupe de Lie
G. Ceci implique la résolubilité locale des opérateurs différentiels bi-invariants sur un super-groupe de Lie
G. Dans le cas particulier des groups, nous obtenons ainsi une nouvelle démonstration du théorème de Duflo
Recommended from our members
NONDOMINANT PARENT PERSPECTIVES ON FAMILY ENGAGEMENT IN RURAL SCHOOLS
This study sought to understand the perspective of nondominant parents in schools who have children in rural school districts concerning what educational leaders can do to increase family and parent engagement in schools and what makes engagement successful. In an effort to understand the perspectives of nondominant parents this study will addresses the following research questions: 1. How do parents of non-dominant students describe their opportunities to participate in school activities? 2. How do parents of non-dominant students describe their opportunities to participate in school leadership activities? 3. How do parents of non-dominant students characterize the ways school leaders seek parental engagement? 3a. What leadership actions are identified as most effective/welcoming? 3b. What leadership actions are identified as least effective/welcoming? Key findings of the study show that systemic implementation of leadership accelerants that include relationships, effective communication, outreach, and empowering leadership may increase parental engagement in schools with nondominant families. This study affirms the importance of educational leaders and the greater community working together with families and the community to create a meaningful family engagement program
Sexual Orientation, Ideology, and Philosophical Method
Here, I examine the epistemic relation between beliefs about the nature of sexual orientation (e.g., beliefs concerning whether orientation is dispositional) and beliefs about the taxonomy of orientation categories (e.g., beliefs concerning whether polyamorous is an orientation category). Current philosophical research gives epistemic priority to the former class of beliefs, such that beliefs about the taxonomy of orientation categories tend to be jettisoned or revised in cases of conflict with beliefs about the nature of sexual orientation. Yet, considering the influence of ideology on beliefs about socially significant phenomena, I argue for an epistemic reversal
- …
