971 research outputs found
Simulation studies for dielectric wakefield programme at CLARA facility
Short, high charge electron bunches can drive high magnitude electric fields
in dielectric lined structures. The interaction of the electron bunch with this
field has several applications including high gradient dielectric wakefield
acceleration (DWA) and passive beam manipulation. The simulations presented
provide a prelude to the commencement of an experimental DWA programme at the
CLARA accelerator at Daresbury Laboratory. The key goals of this program are:
tunable generation of THz radiation, understanding of the impact of transverse
wakes, and design of a dechirper for the CLARA FEL. Computations of
longitudinal and transverse phase space evolution were made with Impact-T and
VSim to support both of these goals.Comment: 10 Pages, 4 Figures, Proceedings of EAAC2017 Conferenc
Tunable Electron Multibunch Production in Plasma Wakefield Accelerators
Synchronized, independently tunable and focused J-class laser pulses are
used to release multiple electron populations via photo-ionization inside an
electron-beam driven plasma wave. By varying the laser foci in the laboratory
frame and the position of the underdense photocathodes in the co-moving frame,
the delays between the produced bunches and their energies are adjusted. The
resulting multibunches have ultra-high quality and brightness, allowing for
hitherto impossible bunch configurations such as spatially overlapping bunch
populations with strictly separated energies, which opens up a new regime for
light sources such as free-electron-lasers
Shear-Wave Elastography Assessments of Quadriceps Stiffness Changes prior to, during and after Prolonged Exercise: A Longitudinal Study during an Extreme Mountain Ultra-Marathon.
In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for diagnosing and monitoring muscle changes
Environmental Restrictors to Occupational Participation in Old Age: Exploring Differences across Gender in Puerto Rico
Many older adults face challenges that prevent them from accomplishing common daily activities such as moving around, home maintenance, and leisure activities. There is still a need to examine and understand how environmental factors impact daily participation across gender. This study sought to make a qualitative comparison of gender differences regarding environmental barriers to participation in daily occupations from the perspectives of older adults who live alone in Puerto Rico. Twenty-six Hispanic older adults, 70 years or older participated in this study. We used a descriptive qualitative research design in which researchers administered an in-depth interview to each participant. The results elucidated that women were more likely than men to experience restricted participation due to lack of accessibility of the built environment and transportation systems. The findings could help with the development of tailored, occupation-based, preventive interventions that address gender specific environmental barriers and promote greater participation among both women and men. Further research is required to explore whether these environmental barriers to occupational participation remain consistent across living situations, socioeconomic status and ethnicity
Data driven approaches for investigating molecular heterogeneity of the brain
It has been proposed that one of the clearest organizing principles for most sensory systems is the existence of parallel subcircuits and processing streams that form orderly and systematic mappings from stimulus space to neurons. Although the spatial heterogeneity of the early olfactory circuitry has long been recognized, we know comparatively little about the circuits that propagate sensory signals downstream. Investigating the potential modularity of the bulb’s intrinsic circuits proves to be a difficult task as termination patterns of converging projections, as with the bulb’s inputs, are not feasibly realized. Thus, if such circuit motifs exist, their detection essentially relies on identifying differential gene expression, or “molecular signatures,” that may demarcate functional subregions. With the arrival of comprehensive (whole genome, cellular resolution) datasets in biology and neuroscience, it is now possible for us to carry out large-scale investigations and make particular use of the densely catalogued, whole genome expression maps of the Allen Brain Atlas to carry out systematic investigations of the molecular topography of the olfactory bulb’s intrinsic circuits. To address the challenges associated with high-throughput and high-dimensional datasets, a deep learning approach will form the backbone of our informatic pipeline. In the proposed work, we test the hypothesis that the bulb’s intrinsic circuits are parceled into distinct, parallel modules that can be defined by genome-wide patterns of expression. In pursuit of this aim, our deep learning framework will facilitate the group-registration of the mitral cell layers of ~ 50,000 in-situ olfactory bulb circuits to test this hypothesis
- …
