1,140 research outputs found
Multicriteria group decision support system "Group Multichoice"
The paper presents a group multicriteria analysis decision support system called Group MultiChoice, designed to support decision makers in solving different multicriteria analysis problems in group manner. Various well-known methods and software systems are discussed. The basic features of the solving modules, the interface modules and the system modules are described
Towards Structural Classification of Proteins based on Contact Map Overlap
A multitude of measures have been proposed to quantify the similarity between
protein 3-D structure. Among these measures, contact map overlap (CMO)
maximization deserved sustained attention during past decade because it offers
a fine estimation of the natural homology relation between proteins. Despite
this large involvement of the bioinformatics and computer science community,
the performance of known algorithms remains modest. Due to the complexity of
the problem, they got stuck on relatively small instances and are not
applicable for large scale comparison. This paper offers a clear improvement
over past methods in this respect. We present a new integer programming model
for CMO and propose an exact B &B algorithm with bounds computed by solving
Lagrangian relaxation. The efficiency of the approach is demonstrated on a
popular small benchmark (Skolnick set, 40 domains). On this set our algorithm
significantly outperforms the best existing exact algorithms, and yet provides
lower and upper bounds of better quality. Some hard CMO instances have been
solved for the first time and within reasonable time limits. From the values of
the running time and the relative gap (relative difference between upper and
lower bounds), we obtained the right classification for this test. These
encouraging result led us to design a harder benchmark to better assess the
classification capability of our approach. We constructed a large scale set of
300 protein domains (a subset of ASTRAL database) that we have called Proteus
300. Using the relative gap of any of the 44850 couples as a similarity
measure, we obtained a classification in very good agreement with SCOP. Our
algorithm provides thus a powerful classification tool for large structure
databases
N–Dimensional Orthogonal Tile Sizing Problem
AMS subject classification: 68Q22, 90C90We discuss in this paper the problem of generating highly efficient code when a
n + 1-dimensional nested loop program is executed on a n-dimensional torus/grid
of distributed-memory general-purpose machines. We focus on a class of uniform
recurrences with non-negative components of the dependency matrix. Using tiling
the iteration space strategy we show that minimizing the total running time reduces
to solving a non-trivial non-linear integer optimization problem. For the later we
present a mathematical framework that enables us to derive an O(n log n) algorithm
for finding a good approximate solution. The theoretical evaluations and the experimental results show that the obtained solution approximates the original minimum
sufficiently well in the context of the considered problem. Such algorithm is realtime usable for very large values of n and can be used as optimization techniques in
parallelizing compilers as well as in performance tuning of parallel codes by hand
Project {\tt SANC} (former {\tt CalcPHEP}): Support of Analytic and Numeric calculations for experiments at Colliders
The project, aimed at the theoretical support of experiments at modern and
future accelerators -- TEVATRON, LHC, electron Linear Colliders (TESLA, NLC,
CLIC) and muon factories, is presented. Within this project a four-level
computer system is being created, which must automatically calculate, at the
one-loop precision level the pseudo- and realistic observables (decay rates and
event distributions) for more and more complicated processes of elementary
particle interaction, using the principle of knowledge storing.
It was already used for a recalculation of the EW radiative corrections for
Atomic Parity Violation [1] and complete one-loop corrections for the process
[2-4]; for the latter an, agreement up to 11 digits with
FeynArts and the other results is found. The version of {\tt SANC} that we
describe here is capable of automatically computing the decay rates and the
distributions for the decays in the one-loop
approximation.Comment: 3 Latex, Presented at ICHEP2002, Amsterdam, July 24-30, 2000;
Submitted to Proceeding
Solving Maximum Clique Problem for Protein Structure Similarity
A basic assumption of molecular biology is that proteins sharing close
three-dimensional (3D) structures are likely to share a common function and in
most cases derive from a same ancestor. Computing the similarity between two
protein structures is therefore a crucial task and has been extensively
investigated. Evaluating the similarity of two proteins can be done by finding
an optimal one-to-one matching between their components, which is equivalent to
identifying a maximum weighted clique in a specific "alignment graph". In this
paper we present a new integer programming formulation for solving such clique
problems. The model has been implemented using the ILOG CPLEX Callable Library.
In addition, we designed a dedicated branch and bound algorithm for solving the
maximum cardinality clique problem. Both approaches have been integrated in
VAST (Vector Alignment Search Tool) - a software for aligning protein 3D
structures largely used in NCBI (National Center for Biotechnology
Information). The original VAST clique solver uses the well known Bron and
Kerbosh algorithm (BK). Our computational results on real life protein
alignment instances show that our branch and bound algorithm is up to 116 times
faster than BK for the largest proteins
Theoretical and probability analysis of frequency selective circuits
The deviations of the circuit characteristics from their nominal values are random quantities and appear as a result
of different destabilizing factors. With designing frequency selective circuits, two mutually connected problems are solved.
The one is a study on the possible variations of circuit characteristics with given probability indices for the instability of the
characteristics of their elements. The other is to synthesize the circuit and to determine the nominal parameters of its
elements considering the requirements for stability of its characteristics. Both problems are solved by the methods of the
theory of circuit sensitivity. The paper presents a new approach to theoretical probability analysis of the characteristics of
frequency selective circuits depending on the relative changes of their parameters
Comparison of SANC with KORALZ and PHOTOS
Using the SANC system we study the one-loop electroweak standard model
prediction, including virtual and real photon emissions, for the decays of
on-shell vector and scalar bosons B --> f anti-f (gamma), where B is a vector
boson, Z or W, or a Standard Model Higgs. The complete one-loop corrections and
exact photon emission matrix element are taken into account. For the
phase-space integration, the Monte Carlo technique is used. For Z decay the QED
part of the calculation is first cross-checked with the exact one-loop QED
prediction of KORALZ. For Higgs boson and W decays, a comparison is made with
the approximate QED calculation of PHOTOS Monte Carlo. This provides a useful
element for the evaluation of the theoretical uncertainty of PHOTOS, very
interesting for its application in ongoing LEP2 and future LC and LHC
phenomenology.Comment: Submitted to Acta Physica Polonica. 9 pages, 6 figure
News on PHOTOS Monte Carlo: gamma^* -> pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma)
PHOTOS Monte Carlo is widely used for simulating QED effects in decay of
intermediate particles and resonances. It can be easily connected to other main
process generators. In this paper we consider decaying processes gamma^* ->
pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma) in the framework of
Scalar QED. These two processes are interesting not only for the technical
aspect of PHOTOS Monte Carlo, but also for precision measurement of
alpha_{QED}(M_Z), g-2, as well as pi pi scattering lengths.Comment: 6 pages, 11 figures, proceedings of the PhiPsi09, Oct. 13-16, 2009,
Beijing, Chin
- …
