20 research outputs found

    Functional display of heterotetrameric human protein kinase CK2 on Escherichia coli: a novel tool for drug discovery

    Get PDF
    Background: Human protein kinase CK2 represents a novel therapeutic target for neoplastic diseases. Inhibitors are in need to explore the druggability and the therapeutic options of this enzyme. A bottleneck in the search for new inhibitors is the availability of the target for testing. Therefore an assay was developed to provide easy access to CK2 for discovery of novel inhibitors. Results: Autodisplay was used to present human CK2 on the surface of Escherichia coli. Heterotetrameric CK2 consists of two subunits, α and β, which were displayed individually on the surface. Co-display of CK2α and CK2β on the cell surface led to the formation of functional holoenzyme, as demonstrated by NaCl dependency of enzymatic activity, which differs from that of the catalytic subunit CK2α without β. In addition interaction of CK2α and CK2β at the cell surface was confirmed by co-immunoprecipitation assays. Surface displayed CK2 holoenzyme enabled an easy IC50 value determination. The IC50 values for the known CK2 inhibitors TBB and Silmitasertib were determined to be 50 and 3.3 nM, respectively. Conclusion: Surface-displayed CK2α and CK2β assembled on the cell surface of E. coli to an active tetrameric holoenzyme. The whole-cell CK2 autodisplay assay as developed is suitable for inhibition studies. Furthermore, it can be used to determine quantitative CK2 inhibition data such as IC50 values. In summary, this is the first report on the functional surface display of a heterotetrameric enzyme on E. coli.<br

    Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2

    Get PDF
    Herein we describe the synthesis and properties of substituted phenylaminopyrrolo[1,2-a]quinoxaline-carboxylic acid derivatives as a novel class of potent inhibitors of the human protein kinase CK2. A set of 15 compounds was designed and synthesized using convenient and straightforward synthesis protocols. The compounds were tested for inhibition of human protein kinase CK2, which is a potential drug target for many diseases including inflammatory disorders and cancer. New inhibitors with IC50 in the micro- and sub-micromolar range were identified. The most promising compound, the 4-[(3-chlorophenyl)amino]pyrrolo[1,2-a]quinoxaline-3-carboxylic acid 1c inhibited human CK2 with an IC50 of 49 nM. Our findings indicate that pyrrolo[1,2-a]quinoxalines are a promising starting scaffold for further development and optimization of human protein kinase CK2 inhibitorsFil: Guillon, Jean. Universite de Bordeaux; Francia;Fil: Le Borgne, Marc. Université de Lyon; Francia;Fil: Rimbault, Charlotte. Universite de Bordeaux; Francia;Fil: Moreau, Stéphane. Universite de Bordeaux; Francia;Fil: Savrimoutou, Solène. Universite de Bordeaux; Francia;Fil: Pinaud, Noël. Universite de Bordeaux; Francia;Fil: Baratin, Sophie. Universite de Bordeaux; Francia;Fil: Marchivie, Mathieu. Universite de Bordeaux; Francia;Fil: Roche, Séverine. Universite de Bordeaux; Francia;Fil: Bollacke, Andre. Institut für Pharmazeutische und Medizinische Chemie. Westfälische Wilhelms-Universität Münster; Alemania;Fil: Pecci, Adali. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Fisiol., Biol.molecular y Neurociencias; Argentina;Fil: Alvarez, Lautaro Damian. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unid.microanal.y Met.fisicos En Quim.org.(i); Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Quimica Organica;Fil: Desplat, Vanessa. Universite de Bordeaux; Francia;Fil: Joachim, Jose. Institut für Pharmazeutische und Medizinische Chemie. Westfälische Wilhelms-Universität Münster; Alemania

    Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening

    Get PDF
    Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 105 variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM)

    A π-Halogen Bond of Dibenzofuranones with the Gatekeeper Phe113 in Human Protein Kinase CK2 Leads to Potent Tight Binding Inhibitors

    Get PDF
    Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[b,d]furan-3(2H)-one (4a) and (E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[b,d]furan-2,7-diol (5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC50 values of 7 nM (4a) and 5 nM (5) and an apparent Ki value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected π-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency

    A pi-Halogen Bond of Dibenzofuranones with the Gatekeeper Phe113 in Human Protein Kinase CK2 Leads to Potent Tight Binding Inhibitors

    No full text
    Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[b,d]furan-3(2H)-one (4a) and (E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[b,d]furan-2,7-diol (5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC50 values of 7 nM (4a) and 5 nM (5) and an apparent K-i value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected pi-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency

    Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening

    Get PDF
    Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 105 variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM)
    corecore