795 research outputs found
The azido ligand: a useful tool in designing chain compounds exhibiting alternating ferro- and antiferro-magnetic interactions
A one-pot reaction of NiII 1, CoII 2, FeII 3 and MnII 4 with 2,2A-bipyridine (bipy) and azide in water leads to [M(bipy)(N3)2]n chains where the metal ion is alternatively bridged by double end-on (EO) and end-to-end (EE) azido bridges; theoretical analysis of the variable-temperature magnetic susceptibility data of 1 and 4 reveals the occurrence of intrachain alternating ferro- (through EO) and antiferro-magnetic (through EE) interactions.Julve Olcina, Miguel, [email protected] ; Lloret Pastor, Francisco, [email protected] ; Clemente Juan, Juan Modesto, [email protected]
Photochemical eco-friendly synthesis of photothermal and emissive copper nanoclusters in water: towards sustainable nanomaterials
Multiple Magnetization Reversal Channels Observed in a 3d-4f Single Molecule Magnet
The present study discusses the magnetic dynamics of a previously reported cyanide bridged 3d-4f dinuclear DyIIICoIII complex. Following the axial anisotropy suggested by previous Electron Paramagnetic Resonance spectroscopy (EPR) analysis, the complex turned out to show slow relaxation of the magnetization at cryogenic temperature, and this was studied in different temperature and field regimes. The existence of multichannel relaxation pathways that reverse the magnetization was clearly disclosed: a tentative analysis suggested that these channels can be triggered and controlled as a function of applied static magnetic field and temperature. Persistent evidence of a temperature independent process even at higher fields, attributable to quantum tunneling, is discussed, while the temperature dependent dynamics is apparently governed by an Orbach process. The broad distribution of relaxation rates evidenced by the ac susceptibility measurements suggest a relevant role of the intermolecular interactions in this system
Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials
Bone tissue engineering offers an alternative promising solution to treat a large number of
bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario,
the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to
direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing
technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D
printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen
and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able
to perform a sol-gel transition under physiological conditions. Field emission scanning electron
microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously
embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate
deposition. The high-water content promoted the strontium ion release from the embedded glass
particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the
suspension printability was assessed by means of rheological studies and preliminary extrusion tests,
showing shear thinning and fast material recovery upon deposition. In conclusion, the reported
results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone
tissue engineering have been developed
A missing high-spin molecule in the family of cyano-bridged heptanuclear heterometal complexes, [(LCuII)6FeIII(CN)6]3+, and its CoIII and CrIII analogues, accompanied in the crystal by a novel octameric water cluster
Three isostructural cyano-bridged heptanuclear complexes,
[{CuII(saldmen)(H2O)}6{MIII(CN)6}](ClO4)38H2O (M = FeIII 2; CoIII, 3;
CrIII 4), have been obtained by reacting the binuclear copper(II) complex,
[Cu2(saldmen)2(mu-H2O)(H2O)2](ClO4)22H2O 1, with K3[Co(CN)6],
K4[Fe(CN)6], and, respectively, K3[Cr(CN)6] (Hsaldmen is the Schiff base
resulted from the condensation of salicylaldehyde with
N,N-dimethylethylenediamine). A unique octameric water cluster, with
bicyclo[2,2,2]octane-like structure, is sandwiched between the heptanuclear
cations in 2, 3 and 4. The cryomagnetic investigations of compounds 2 and 4
reveal ferromagnetic couplings of the central FeIII or CrIII ions with the CuII
ions (JCuFe = +0.87 cm-1, JCuCr = +30.4 cm-1). The intramolecular Cu-Cu
exchange interaction in 3, across the diamagnetic cobalt(III) ion, is -0.3
cm-1. The solid-state1H-NMR spectra of compounds 2 and 3 have been
investigated
Slow Relaxation of Magnetization in an Isostructural Series of Zinc–Lanthanide Complexes: An Integrated EPR and AC Susceptibility Study
We report the synthesis, structure, and spectroscopic and dynamic magnetic properties of a series of heterodinuclear complexes, [ZnLn(LH4 )2 ](NO3 )3 ⋅6 H2 O (Ln=Nd, Tb, Dy, Ho, Er, and Yb), with the singly deprotonated form of a new compartmentalized Schiff-base ligand, LH5 . The Ln(III) ions in these systems show a distorted square-antiprism geometry with an LnO8 coordination sphere. EPR spectroscopy and DC magnetic studies have shown that the anisotropic nature of the complexes is far more complicated than predicted on the basis of a simple electrostatic model. Among the investigated systems, only the Dy(III) derivative showed single-ion magnet behavior, in zero and an applied magnetic field, both in pure polycrystalline samples and in a series of polycrystalline samples with different degrees of dilution at the single-crystal level in the isostructural Y(III) derivative. The rich dynamics observed as functions of frequency, field, and temperature reveals that multiple relaxation mechanisms are at play, resulting in a barrier of 189 cm(-1) , which is among the highest reported for a dinuclear Zn-Dy system. Analysis of the dynamic behavior as a function of dilution degree further evidenced the persistence of non-negligible intermolecular interactions, even at the lowest concentration of 1 %
Synthesis, structure, magnetic and magnetocaloric properties of a series of Cr4IIILnIII complexes
Magnetic properties and magnetocaloric effect of rare heterometallic Cr(iii)–Ln(iii) complexes are reported.</p
Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte
- …
