279 research outputs found
Finanzierung der wissenschaftlichen Weiterbildung im Zusammenhang mit berufsbegleitenden Masterprogrammen aus der Universität Zürich
Im Rahmen einer Studie hat der Lehrstuhl für Performance Management unter der Leitung von Frau Prof. Dr. Andrea Schenker-Wicki untersucht, in welcher Form die Mitarbeiterinnen und Mitarbeiter von Unternehmungen in der Weiterbildung unterstützt werden. Befragt wurden Absolventinnen und Absolventen verschiedener Weiterbildungsstudiengänge an der Universität Zürich
Unifying candidate gene and GWAS Approaches in Asthma.
The first genome wide association study (GWAS) for childhood asthma identified a novel major susceptibility locus on chromosome 17q21 harboring the ORMDL3 gene, but the role of previous asthma candidate genes was not specifically analyzed in this GWAS. We systematically identified 89 SNPs in 14 candidate genes previously associated with asthma in >3 independent study populations. We re-genotyped 39 SNPs in these genes not covered by GWAS performed in 703 asthmatics and 658 reference children. Genotyping data were compared to imputation data derived from Illumina HumanHap300 chip genotyping. Results were combined to analyze 566 SNPs covering all 14 candidate gene loci. Genotyped polymorphisms in ADAM33, GSTP1 and VDR showed effects with p-values <0.0035 (corrected for multiple testing). Combining genotyping and imputation, polymorphisms in DPP10, EDN1, IL12B, IL13, IL4, IL4R and TNF showed associations at a significance level between p = 0.05 and p = 0.0035. These data indicate that (a) GWAS coverage is insufficient for many asthma candidate genes, (b) imputation based on these data is reliable but incomplete, and (c) SNPs in three previously identified asthma candidate genes replicate in our GWAS population with significance after correction for multiple testing in 14 genes
Efficacy, safety and quality of life in a multicenter, randomized, placebo-controlled trial of low-dose peanut oral immunotherapy in children with peanut allergy
BACKGROUND:
Only 2 small placebo-controlled trials on peanut oral immunotherapy (OIT) have been published.
OBJECTIVE:
We examined the efficacy, safety, immunologic parameters, quality of life (QOL), and burden of treatment (BOT) of low-dose peanut OIT in a multicenter, double-blind, randomized placebo-controlled trial.
METHODS:
A total of 62 children aged 3 to 17 years with IgE-mediated, challenge-proven peanut allergy were randomized (1:1) to receive peanut OIT with a maintenance dose of 125 to 250 mg peanut protein or placebo. The primary outcome was the proportion of children tolerating 300 mg or more peanut protein at oral food challenge (OFC) after 16 months of OIT. We measured the occurrence of adverse events (AEs), immunologic changes, and QOL before and after OIT and BOT during OIT.
RESULTS:
Twenty-three of 31 (74.2%) children of the active group tolerated at least 300 mg peanut protein at final OFC compared with 5 of 31 (16.1%) in the placebo group (P < .001). Thirteen of 31 (41.9%) children of the active versus 1 of 31 (3.2%) of the placebo group tolerated the highest dose of 4.5 g peanut protein at final OFC (P < .001). There was no significant difference between the groups in the occurrence of AE-related dropouts or in the number, severity, and treatment of objective AEs. In the peanut-OIT group, we noted a significant reduction in peanut-specific IL-4, IL-5, IL-10, and IL-2 production by PBMCs compared with the placebo group, as well as a significant increase in peanut-specific IgG4 levels and a significant improvement in QOL; 86% of children evaluated the BOT positively.
DISCUSSION:
Low-dose OIT is a promising, effective, and safe treatment option for peanut-allergic children, leading to improvement in QOL, a low BOT, and immunologic changes showing tolerance development
Impact of IL8 and IL8-Receptor alpha polymorphisms on the genetics of bronchial asthma and severe RSV infections
BACKGROUND: Interleukin 8 (IL8) belongs to the family of chemokines. It mediates the activation and migration of neutrophils from peripheral blood into tissue and hereby plays a pivotal role in the initiation of inflammation. Thus it is important in inflammatory lung diseases like bronchial asthma or severe infections by Respiratory Syncytial Virus (RSV). IL8 acts through binding to the IL8-Receptor alpha (IL8RA). For both genes association with asthma has been described. In addition, IL8 has been found in association with RSV bronchiolitis. The aim of our study was to test both genes for association with asthma and severe RSV infections. In addition we were interested in whether a common genetic background of both diseases exists in regards to these genes. METHODS: We genotyped the two IL8 promotor polymorphisms -251A/T and -781C/T and the three amino acid variants M31R, S276T and R335C in IL8RA on 322 children with asthma, 131 infants with severe RSV associated diseases and 270 controls. Statistical analyses made use of the Armitage's trend test for single polymorphisms and FAMHAP for calculations of haplotypes. RESULTS: We found association of the IL8 polymorphism -781C/T as well as IL8 haplotypes with asthma (p = 0.011 and p = 0.036, respectively). In addition, direct comparison of the asthmatic population with the RSV population revealed significant differences, both for -781C/T alone (p = 0.034) and IL8 haplotypes (p = 0.005). The amino acid variants in IL8RA were evenly distributed in between all three populations. CONCLUSION: We conclude from our data that IL8 might play a role in the genetic predisposition to asthma and that these effects are different or even opposite to the effects on severe RSV diseases. Furthermore, IL8RA is unlikely to play a major role in the genetics of either disease
Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.
Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma
Genetic and Epidemiological Risk Factors in the Development of Bronchopulmonary Dysplasia
Bronchopulmonary dysplasia (BPD) is the chronic lung disease of preterm infants and still represents a major burden of prematurity. Several clinical risk factors for the onset of the disease are already known. In addition, some candidate genes have recently been identified. We set out to determine clinical as well as genetic risk factors for the development of BPD in the German population.155 infants born with a gestational age ࣘ 28 at the tertiary neonatal Centre, Freiburg, were recruited. Clinical data were recorded from hospital charts. 47 children developed moderate or severe BPD. For genetic analyses, 37 polymorphisms within sixteen genes were genotyped on all children.The strongest epidemiological risk factor for BPD was birth weight, followed by low gestational age. Genetic association was detected with single polymorphisms within Tumour necrosis factor alpha, Toll like receptor 10 and vascular endothelial growth factor. The former two genes showed also association with BPD in haplotype analyses. In conclusion, association of BPD was far more convincingly found with a few clinical factors than with genetic polymorphisms. This underscores the genetic complexity of the disease. Furthermore, the identification of predisposing genetic polymorphisms might be hampered by the complex interaction between clinical and genetic factors.</jats:p
A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma.
Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinnIL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (β = -0.21 SD, P = 2.5×10-16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10-4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.Netherlands Asthma Foundation University Medical Center Groningen
Ministry of Health and Environmental Hygiene of Netherlands
Netherlands Asthma
Stichting Astma Bestrijding
BBMRI
European Respiratory Society
private and public research funds
AstraZeneca
ALK-Abello, Denmar
Desorption Electrospray Ionization Mass Spectrometry Reveals Lipid Metabolism of Individual Oocytes and Embryos.
Alteration of maternal lipid metabolism early in development has been shown to trigger obesity, insulin resistance, type 2 diabetes and cardiovascular diseases later in life in humans and animal models. Here, we set out to determine (i) lipid composition dynamics in single oocytes and preimplantation embryos by high mass resolution desorption electrospray ionization mass spectrometry (DESI-MS), using the bovine species as biological model, (ii) the metabolically most relevant lipid compounds by multivariate data analysis and (iii) lipid upstream metabolism by quantitative real-time PCR (qRT-PCR) analysis of several target genes (ACAT1, CPT 1b, FASN, SREBP1 and SCAP). Bovine oocytes and blastocysts were individually analyzed by DESI-MS in both positive and negative ion modes, without lipid extraction and under ambient conditions, and were profiled for free fatty acids (FFA), phospholipids (PL), cholesterol-related molecules, and triacylglycerols (TAG). Principal component analysis (PCA) and linear discriminant analysis (LDA), performed for the first time on DESI-MS fused data, allowed unequivocal discrimination between oocytes and blastocysts based on specific lipid profiles. This analytical approach resulted in broad and detailed lipid annotation of single oocytes and blastocysts. Results of DESI-MS and transcript regulation analysis demonstrate that blastocysts produced in vitro and their in vivo counterparts differed significantly in the homeostasis of cholesterol and FFA metabolism. These results should assist in the production of viable and healthy embryos by elucidating in vivo embryonic lipid metabolism
Association of a FGFR-4 Gene Polymorphism with Bronchopulmonary Dysplasia and Neonatal Respiratory Distress
Background. Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease of premature birth, characterized by impaired alveolar development and inflammation. Pathomechanisms contributing to BPD are poorly understood. However, it is assumed that genetic factors predispose to BPD and other pulmonary diseases of preterm neonates, such as neonatal respiratory distress syndrome (RDS). For association studies, genes upregulated during alveolarization are major candidates for genetic analysis, for example,matrix metalloproteinases (MMPs)andfibroblast growth factors (FGFs)and their receptors(FGFR).Objective. Determining genetic risk variants in a Caucasian population of premature neonates with BPD and RDS.Methods. We genotyped 27 polymorphisms within 14 candidate genes via restriction fragment length polymorphism (RFLP):MMP-1, -2, -9, and -12, -16, FGF receptors 2 and 4, FGF-2, -3, -4, -7, and -18, Signal-Regulatory Proteinα(SIRPA)andThyroid Transcription Factor-1 (TTF-1).Results. Five single nucleotide polymorphisms (SNPs) inMMP-9, MMP-12, FGFR-4, FGF-3, and FGF-7are associated () with RDS, defined as surfactant application within the first 24 hours after birth. One of them, inFGFR-4(rs1966265), is associated with both RDS () and BPD ().Conclusion. rs1966265 inFGF receptor 4is a possible genetic key variant in alveolar diseases of preterm newborns.</jats:p
Meta-analysis identifies seven susceptibility loci involved in the atopic March
Eczema often precedes the development of asthma in a disease course called the a 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10 a'8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10 a'9). Additional susceptibility loci identified
- …
