106 research outputs found
Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy
BackgroundApolipoprotein E (ApoE) is a multifunctional protein, and its deficiency leads to the development of atherosclerosis in mice. Patients with pulmonary hypertension (PH) have reduced expression of ApoE in lung tissue. ApoE is known to inhibit endothelial and smooth muscle cell proliferation and has anti-inflammatory and anti-platelet aggregation properties. Young ApoE-deficient mice have been shown to develop PH on high fat diet. The combined role of female sex and aging in the development of PH has not been investigated before. Here, we investigated the development of PH in young and middle-aged (MA) female ApoE-deficient mice and explored the role of exogenous estrogen (E2) replacement therapy for the aging females.MethodsWild type (WT) and ApoE-deficient female mice (Young and MA) were injected with a single intraperitoneal dose of monocrotaline (MCT, 60 mg/kg). Some ApoE-deficient MA female mice that received MCT were also treated with subcutaneous E2 pellets (0.03 mg/kg/day) from day 21 to 30 after MCT injection. Direct cardiac catheterization was performed terminally to record right ventricular systolic pressure (RVSP). Right ventricular (RV), left ventricular (LV), and interventricular septum (IVS) were dissected and weighed. Lung sections were examined using trichrome and immunofluorescence staining. Western blot analyses of lung and RV lysates were performed.ResultsIn WT female mice, the severity of PH was similar between young and MA mice as RVSP was not significantly different (RVSP = 38.2 ± 1.2 in young vs. 40.5 ± 8.3 mmHg in MA, p < 0.05). In ApoE-deficient mice, MA females developed significantly severe PH (RVSP = 63 ± 10 mmHg) compared to young females (RVSP; 36 ± 3 mmHg, p < 0.05 vs. MA female). ApoE-deficient MA females also developed more severe RV hypertrophy compared to young females (RV hypertrophy index (RV/[LV + IVS]) = 0.53 ± 0.06 vs. 0.33 ± 0.01, p < 0.05). ApoE-deficient MA female mice manifested increased peripheral pulmonary artery muscularization and pulmonary fibrosis. E2 treatment of MA female ApoE-deficient mice resulted in a significant decrease in RVSP, reversal of pulmonary vascular remodeling, and RV hypertrophy. In MA female ApoE-deficient mice with PH, only the expression of ERβ in the lungs, but not in RV, was significantly downregulated, and it was restored by E2 treatment. The expression of ERα was not affected in either lungs or RV by PH. GPR30 was only detected in the RV, and it was not affected by PH in MA female ApoE-deficient mice.ConclusionsOur results suggest that only aging female ApoE-deficient but not WT mice develop severe PH compared to younger females. Exogenous estrogen therapy rescued PH and RV hypertrophy in aging female ApoE-deficient mice possibly through restoration of lung ERβ
Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy.
BackgroundEstrogen pretreatment has been shown to attenuate the development of heart hypertrophy, but it is not known whether estrogen could also rescue heart failure (HF). Furthermore, the heart has all the machinery to locally biosynthesize estrogen via aromatase, but the role of local cardiac estrogen synthesis in HF has not yet been studied. Here we hypothesized that cardiac estrogen is reduced in HF and examined whether exogenous estrogen therapy can rescue HF.Methods and resultsHF was induced by transaortic constriction in mice, and once mice reached an ejection fraction (EF) of ≈35%, they were treated with estrogen for 10 days. Cardiac structure and function, angiogenesis, and fibrosis were assessed, and estrogen was measured in plasma and in heart. Cardiac estrogen concentrations (6.18±1.12 pg/160 mg heart in HF versus 17.79±1.28 pg/mL in control) and aromatase transcripts (0.19±0.04, normalized to control, P<0.05) were significantly reduced in HF. Estrogen therapy increased cardiac estrogen 3-fold and restored aromatase transcripts. Estrogen also rescued HF by restoring ejection fraction to 53.1±1.3% (P<0.001) and improving cardiac hemodynamics both in male and female mice. Estrogen therapy stimulated angiogenesis as capillary density increased from 0.66±0.07 in HF to 2.83±0.14 (P<0.001, normalized to control) and reversed the fibrotic scarring observed in HF (45.5±2.8% in HF versus 5.3±1.0%, P<0.001). Stimulation of angiogenesis by estrogen seems to be one of the key mechanisms, since in the presence of an angiogenesis inhibitor estrogen failed to rescue HF (ejection fraction=29.3±2.1%, P<0.001 versus E2).ConclusionsEstrogen rescues pre-existing HF by restoring cardiac estrogen and aromatase, stimulating angiogenesis, and suppressing fibrosis
Cardiac Vulnerability to Ischemia/Reperfusion Injury Drastically Increases in Late Pregnancy
Digitalitzat per Artypla
The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy.
Pregnancy is associated with decreased cardiac proteasome activity and oxidative stress in mice.
Estrogen Therapy Rescues Advanced Heart Failure via Estrogen Receptor Beta
Cardiac hypertrophy, defined as an enlargement of the ventricles, is often triggered when the heart is subjected to hemodynamic stress from physiological stimuli such as pregnancy, or from pathological stimuli such as pressure overload-induced left ventricular hypertrophy or pulmonary hypertension-induced right ventricular hypertrophy. Physiological hypertrophy is beneficial and adaptive, while pathological hypertrophy is maladaptive and detrimental. Estrogen treatment prior to the onset of pathological stimuli is known to attenuate the progression of the onset of ventricular hypertrophy, cardiac dysfunction and subsequent failure. However it was not known whether estrogen is also effective in rescuing heart failure since heart failure is not often diagnosed early and therapeutic intervention after the onset of hypertrophy and failure is necessary. In Chapters 3 and 4 I use two different models of hypertrophy and failure, the pressure overload-induced left ventricular hypertrophy and failure as well as the pulmonary hypertension-induced right ventricular hypertrophy and failure. I show that short-term estrogen therapy after the onset of cardiac dysfunction in both models rescues function via activation of the estrogen receptor β. This rescue action of estrogen is also associated with reversal of cardiac fibrosis and stimulation of angiogenesis, both of which are essential in nurturing the heart
Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis
Drug-induced liver injury (DILI) can broadly be divided into predictable and dose dependent such as acetaminophen (APAP) and unpredictable or idiosyncratic DILI (IDILI). Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable) results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis) of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER) and mitochondrial stress) leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI) is usually the result of engagement of the innate and adaptive immune system (likely apoptotic), involving death receptors (DR). Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death
- …
